Medical therapy of IBD: What’s new in 2015

Maria T. Abreu, MD
Chief, Division of Gastroenterology
Professor of Medicine, and Microbiology and Immunology
University of Miami Miller School of Medicine
Miami, Florida

Abnormal Mucosal Immune Responses in IBD

Crohn's-like Ulcerative colitis-like
Treating IBD

Blood vessel → Leukocyte → Diapedesis → Intestinal Cell → TNF-α → Gut Mucosa

Biologic Agents for CD or UC

<table>
<thead>
<tr>
<th>Biologic Agent</th>
<th>Structure</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infliximab</td>
<td></td>
<td>Chimeric monoclonal antibody (75% human IgG1 isotype)</td>
</tr>
<tr>
<td>Adalimumab</td>
<td></td>
<td>Human recombinant antibody (100% human IgG1 isotype)</td>
</tr>
<tr>
<td>Certolizumab Pegol</td>
<td></td>
<td>Humanized Fab' fragment (95% human IgG1 isotype)</td>
</tr>
<tr>
<td>Vedolizumab</td>
<td></td>
<td>Humanized IgG1</td>
</tr>
</tbody>
</table>

Maria T. Abreu, MD

ACG/FGS Spring Symposium - Naples, FL
Copyright 2015 American College of Gastroenterology
Positioning New and Established Medications for IBD

Induction of Remission/Active Disease
- Cyclosporine
- Ustekinumab (CD)
- Tofacitinib (UC)
 - Vedolizumab (rapidity of response)
- Anti-TNFs
- Corticosteroids
- Budesonide
- 5-ASA

Maintenance of Remission
- Ustekinumab (CD)
- Vedolizumab
- Anti-TNFs
- Methotrexate (CD)
- 6-MP/Azathioprine

When to start? Which to choose? And when do we need combination therapy?

Immunomodulators: Thiopurines MTX
- Mechanistic synergy
- Higher levels of biologic
- MTX for young men

Anti-TNFs Anti-adhesion molecules (immunogenic)
- High inflammatory burden
- Moderate-to-severe disease
- Steroid-refractory disease
- Severe prognostic markers
When to start? Which to choose? And when do we need combination therapy?

Immunomodulators:
- Thiopurines
- MTX

Anti-TNFs
- Anti-adhesion molecules (immunogenic)

- Steroid-dependent disease (applies to both CD/UC)
- Low inflammatory burden
- Steroid-refractory disease
- Mild course/ prognostic markers
- Hi-risk for complications from combo therapy?

SONIC
Combination therapy with infliximab and azathioprine works better than either alone in Crohn’s disease

Clinical Remission Without Corticosteroids at Week 26

<table>
<thead>
<tr>
<th>Proportion of Patients (%)</th>
<th>p<0.001</th>
<th>p=0.009</th>
<th>p=0.022</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZA + placebo</td>
<td>30</td>
<td>45</td>
<td>57</td>
</tr>
<tr>
<td>IFX + placebo</td>
<td>52/170</td>
<td>75/169</td>
<td>96/169</td>
</tr>
</tbody>
</table>

SONIC

Combination therapy with infliximab and azathioprine works better than either alone in Crohn’s disease

Mucosal Healing at Week 26

<table>
<thead>
<tr>
<th>Proportion of Patients (%)</th>
<th>AZA + placebo</th>
<th>IFX + placebo</th>
<th>IFX + AZA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>16/109</td>
<td>30/93</td>
<td>44/107</td>
</tr>
<tr>
<td>p<0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p=0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p=0.055</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UC SUCCESS

Combination therapy with infliximab and azathioprine works better than either alone in UC

Patients (%)

<table>
<thead>
<tr>
<th>Steroid-free remission</th>
<th>Response</th>
<th>Mucosal Healing</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>22/24</td>
<td>55/37</td>
</tr>
<tr>
<td>*P <0.05 compared to IFX; #P <0.05 compared to AZA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SONIC: IFX Trough Levels at Week 30* are Higher with Concomitant AZA

* Patients who had 1 or more PK samples obtained after their first study agent administration were included in the analysis

Trough Concentration of Infliximab is Higher With Concurrent Methotrexate

Why Don’t Patients Respond to Anti-TNFs?

• Dose not high enough:
 – Dose of anti-TNF proportional to extent and severity of inflammation
 – Tissue versus serum levels of drug

• Different mechanism driving inflammation:
 – Could be different cytokines
 – Could be epithelial dysfunction
 – Microbial dysbiosis
Assessing loss of response

*If history compatible with early response then loss, I would still try higher dose of biologic in spite of “therapeutic” levels

Adalimumab Trough Levels Correlate With Mucosal Healing

Tissue levels of the anti-TNF may be insufficient for the amount of TNF in the tissue

Factors that affect anti-TNF concentrations

- **Increased (good)**
 - Concomitant immunomodulator

- **Decreased (bad)**
 - Hi CRP
 - Low albumin
 - Anti-drug Abs
 - Hi levels of TNF
 - Hi BMI (waist-to-hip ratio)
 - Male gender

ADA=adalimumab

Immunogenicity of Monoclonal Biologics in IBD

<table>
<thead>
<tr>
<th></th>
<th>Patients, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Episode Maintenance</td>
</tr>
<tr>
<td></td>
<td>IMS-</td>
</tr>
<tr>
<td>Infliximab¹</td>
<td>CD 5 mg/kg</td>
</tr>
<tr>
<td></td>
<td>CD 10 mg/kg</td>
</tr>
<tr>
<td>Infliximab²</td>
<td>UC 5 mg/kg</td>
</tr>
<tr>
<td></td>
<td>UC 10 mg/kg</td>
</tr>
<tr>
<td>Certolizumab³</td>
<td>(PRECISE I)</td>
</tr>
<tr>
<td>Certolizumab⁴</td>
<td>(PRECISE II)</td>
</tr>
<tr>
<td>Adalimumab⁵</td>
<td>(RA, all doses)</td>
</tr>
<tr>
<td>Adalimumab⁶ (CLASSIC II)</td>
<td>No data</td>
</tr>
<tr>
<td>Golimumab⁷ (PURSUIT)</td>
<td>No data</td>
</tr>
<tr>
<td>Vedolizumab⁸</td>
<td>No data</td>
</tr>
<tr>
<td>Ustekinumab⁹ (CERTIFI)</td>
<td>No data</td>
</tr>
</tbody>
</table>

* v/v=vedolizumab induction followed by vedolizumab maintenance; v/p=vedolizumab induction followed by placebo maintenance

IMS- immunosuppressant; IMS+ immunomodulator

Patients with Higher CRP Do Better with Higher Doses of Adalimumab: CHARM Study

- CRP ≥10 mg/L
- CRP <10 mg/L

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline CRP</th>
<th>Adalimumab Every Other Week</th>
<th>Adalimumab Weekly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo (n=34)</td>
<td>37 mg/L</td>
<td>32 mg/L</td>
<td>29 mg/L</td>
</tr>
<tr>
<td>ADA 40mg every week</td>
<td>4.4 mg/L</td>
<td>2.5 mg/L</td>
<td></td>
</tr>
</tbody>
</table>

Remission

- Week 26
 - 29 patients
 - 79 patients
- Week 56
 - 41 patients
 - 64 patients

Optimizing levels of anti-TNF may help maintain long-term response

a. Baseline CRP: placebo 37 mg/L; adalimumab every other week 32 mg/L; adalimumab weekly 29 mg/L.

b. Baseline CRP: placebo 4.1 mg/L; adalimumab every other week 4.4 mg/L; adalimumab weekly 2.5 mg/L.

Dose intensification of infliximab in patients with loss of response led to mucosal healing

- Enrolled 52 IBD patients (34 CD and 18 UC) with secondary failure to IFX
- Dose escalation to 10 mg/kg in all patients
- IFX trough, ATI, CRP, and calprotectin measured before dose optimization and at Week 8
- Endpoint: Mucosal healing at Week 8

Active monitoring of anti-TNF levels may ensure durability of response

Prospectively optimized IFX trough concentrations to a target range of 5-10ug/ml

Monoclonal antibody-based therapies (like infliximab, vedolizumab)
- Trough levels, peak levels
- Functional assay:
 - % receptor occupancy
 - Downstream biologic effect

Small molecule inhibitors (like tofacitinib)
- Drug levels
- Functional assays—cytokine inhibition

Impact of Combination Therapy
- Synergy
- Reduced immunogenicity
- Reduced drug clearance
- Higher levels of the biologic
Therapeutic levels of thiopurines may not be necessary for beneficial effect on biologic concentrations

Association Between Clinical Response and 6-TGN in Pediatric Patients with IBD

Levels of 6-TGN correlate with trough infliximab levels

Yarur et al. Clinical Gastroenterology and Hepatology in press 2015

When anti-TNFs don’t work what’s next?

What is the unmet need
Unmet need: mucosal healing with anti-TNF +/- immunomodulator

Unmet need with anti-TNFs

- For both diseases
 - Patients with co-morbidities, e.g. MS, cancer
 - Older age
 - Previous malignancy (vedolizumab probably ok)
 - High attrition of anti-TNF effect (immunogenicity + mechanistic escape)
 - 10-20% per year not counting need to increase dose
Unmet need: what have we filled in so far (editorial comments)

- UC
 - Vedolizumab big advance
 - Jak inhibitors
- CD
 - Ustekinumab (modest)
 - Vedolizumab better than clinical trial data belies
 - Jak inhibitors need another chance

Genetic Associations in the IL-12/23 Pathways

IL-12 and IL-23 Cytokines and Receptors Are First Cousins

IL-12

IL-23

Intracellular Signaling (eg, STAT-P)

Anti-p40 Mechanism of Action

IL-12

IL-23

Ustekinumab
Briakinumab

No Signal
Ustekinumab for Crohn’s Disease: Blocks IL-12/IL-23

Normal Host: Leukocyte Surveillance
Immune Defect in IBD: Increased Leukocyte Migration and Activation

Diapedesis in IBD
Minimizing Diapedesis

Key Adhesion Molecule Interactions

- **α4-Integrins**: required for firm adhesion to and migration across endothelium
- **Natalizumab**
- **Vedolizumab**
- **Upregulated by cytokines**
- **PF-00547,659 (Anti-MAdCAM)**

MAdCAM-1 = mucosal addressin cell adhesion molecule-1; VCAM-1 = vascular cell adhesion molecule-1

Vedolizumab: A Monoclonal Antibody For IBD

- Humanized IgG1
- Targets only α4β7 integrin
- 30 min IV infusion
- No Fc-receptor binding or complement fixation (ADCC)

GEMINI I: Vedolizumab in Ulcerative Colitis Induction Phase: Outcomes at Week 6

<table>
<thead>
<tr>
<th>Induction ITT population</th>
<th>Primary Outcome</th>
<th>Secondary Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PBO (n=146)</td>
<td>VDX (n=225)</td>
</tr>
<tr>
<td>Clinical Response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.5</td>
<td>47.1</td>
<td>p < 0.051</td>
</tr>
<tr>
<td>(95% CI: 16.6 - 31.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Remission</td>
<td>11.5 (4.7, 18.3)</td>
<td>16.3</td>
</tr>
<tr>
<td>p < 0.051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mucoanal Healing</td>
<td>16.1 (6.4, 26.9)</td>
<td>24.8</td>
</tr>
<tr>
<td>p < 0.001</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PBO, placebo; VDX, vedolizumab; Mean ± SD (95% CI). *p* < 0.05 indicates significance. Vedolizumab is superior to placebo (95% confidence interval).

GEMINI I: Vedolizumab in Ulcerative Colitis Maintenance Phase: Outcomes at Week 52

Vedolizumab Response Based on Trough Levels: UC Week 6

GEMINI II: Vedolizumab in Crohn’s Disease

Induction Phase: Outcomes at week 6

Primary endpoints

- **Clinical Remission**
 - PBO (n=148): 6.8%
 - VDZ (n=200): 14.5%

- **CDAI-100 Response**
 - PBO (n=148): 25.7%
 - VDZ (n=200): 31.4%

Mean ±2% (95% CI) VDZ vs PBO
- Clinical Remission: 7.8 (12.143)
- CDAI-100 Response: 5.7 (-36.15.0)

Maintenance Phase: Outcomes at week 52

Maintenance ITT Population

- **Clinical Remission**
 - PBO: 21.6%
 - VDZ Q8 wks: 39%
 - VDZ Q4 Wks: 36.4%

- **CDAI-100 Response**
 - PBO: 30.1%
 - VDZ Q8 wks: 43.5%
 - VDZ Q4 Wks: 45.4%

*p<0.05 **p<0.01

Vedolizumab works in CD patients that have been on anti-TNF previously

Clinical remission at week 10

PF-00547,659 (anti-MAdCAM IgG2 antibody) in active ulcerative colitis

Finding the Right Mechanism for the Right Patient