Barrett’s Esophagus – Who to Treat and How?

Kenneth K. Wang, MD, FACG, FASGE
Kathy and Russ Van Cleve Professor of Gastroenterology Research
Director of Advanced Endoscopy
Mayo Clinic, Rochester, MN

Conflicts of Interest

• Research Funding: Covidien, Olympus America, CSA
• Patent: Abbott Molecular Diagnostics
Questions

• Who should be treated for Barrett’s esophagus?
• What are the available therapeutic tools?
• What are the goals of therapy?
• Should patients be followed post-ablation?

Case 1: Worried mother of 2

• 39 yo WF, presents with concerns of esophageal cancer
• Husband passed away 2 years ago from esophageal adenocarcinoma
• Occasional reflux 1/month
• No risk factors
Case 1: Endoscopy

- Z line as seen at right
- No evidence of esophagitis

Would you biopsy this Z-line for BE?

Barrett’s Esophagus

- Barrett’s esophagus does not impact overall patient survival (Gut 48(3): 304-309, 2001)
- Very few patients are found to actually develop cancer (Gastroenterology 120(7): 1607-1619, 2001)
- Most people who develop Barrett’s esophagus related cancers do not know they have it (New England Journal of Medicine 365(15): 1375-1383)
BE and Overall Survival: Olmsted County, MN

- Overall survival at 5 years 82.5% (95% CI: 79,89)
- Median follow up 7.1 years (SD 4.8 years)

Prasad, Wang, Am J Gastroenterol 2009

Cancer Risk in BE

- Overall risk of progression without dysplasia:
 - Publication bias: 27 studies
 - 0.5% per year
 - Risk is 1:200 patients
- LOW RISK OF CANCER

Gastroenterology 2000;119:333-8
Largest Population Based Study

- 11,028 pts with BE in Denmark, follow up 5 yrs
 - Year 1: 131 cases of cancer
 - Subsequent yrs: 66 cases
- Incidence 1.2 cases per 1000 person-years (95% CI, 0.9 to 1.5)
- Relative risk was 11.3 (8.8 to 14.4)

Low Grade Dysplasia

- Progression rate in a meta-analysis of 24 studies
- Trend of decreasing cancer in past decade
- Evidence of publication bias (p<0.01) and study heterogeneity

Singh, Gastrointest Endosc 2014;79:897-909
RCT of LGD treatment with RFA

* Very high rate of progression in control group
* All progressors (except 1) could be treated endoscopically

JAMA. 2014;311(12):1209-1217.

LGD: risk stratification

* Increased risk of progression
 * Extent of dysplasia (focal versus diffuse)
 * Agreement between pathologists
 * 0% versus 41% versus 80%
 * Biomarkers
 * p53 overexpression (40% versus 10%)
 * Aneusomy, tetraploidy (29% versus 0%)
 * Factors may be additive (p53 + agreement between pathologists)

Srivastava Am J Gastroenterol 2007
Skacel Am J Gastroenterol 2000
Reid Am J Gastroenterol 2000
Weston Am J Gastroenterol 2001
Current Recommendations

• Early Cancer: Intramucosal, T1a
 • No lymphovascular invasion
 • Undifferentiated cancers can be treated (Am J Gastroenterol 2012; 107:850–862)

• High grade dysplasia
• Low grade dysplasia
 • Higher risk: Agreement of multiple pathologists
 • Immunohistochemistry: p53 positive
 • Present on multiple surveillance biopsies

Case 2

• 55 yo WM presents with long history of refractory GERD, endoscopy shows Barrett’s esophagus
• Biopsies obtained from the esophagus demonstrate high grade dysplasia with possible intramucosal cancer
Would you ablate this patient?

Removing the Mucosa

- Endoscopic Mucosal Resection: Snare
- Endoscopic Submucosal Dissection: Knife
Mucosal Resection: EMR-C

Crescent Snare
25 mm Loop
2 mm diameter
165 cm length

<table>
<thead>
<tr>
<th>Length (mm)</th>
<th>Diameter (mm)</th>
<th>Scope Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>12.9</td>
<td>PQ-140, 160, XQ180, 190</td>
</tr>
<tr>
<td>12</td>
<td>13.9</td>
<td>XQ140, 160</td>
</tr>
<tr>
<td>12</td>
<td>14.9</td>
<td>1T140, 1T160, 1T180</td>
</tr>
<tr>
<td>12</td>
<td>19.2</td>
<td>2T160</td>
</tr>
</tbody>
</table>

Single Cap and Band EMR
Multi-Band EMR

Endoscopic Submucosal Dissection

- Submucosal injection
- Involves a cutting device
- No suction used
ESD literature on esophageal cancers

- 4 compared (retrospectively) ESD and EMR

<table>
<thead>
<tr>
<th></th>
<th>En bloc resection</th>
<th>Major bleeding</th>
<th>Stricture</th>
<th>Perforation</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMR</td>
<td>45% to 83%</td>
<td>1%</td>
<td>up to 9.2%</td>
<td>0 to 7%</td>
</tr>
<tr>
<td>ESD</td>
<td>95% to 100%</td>
<td>0%</td>
<td>up to 17.2%</td>
<td>1.4 to 5.6%</td>
</tr>
</tbody>
</table>

Endoscopic Submucosal Dissection vs EMR

- ESD: Removes larger sized specimens than EMR (Gastrointestinal Endoscopy 2009;70:112-20)
- Greater likelihood of en bloc resection for lesions > 1.5 cm (Gastrointestinal Endoscopy 2008;68:1066-72)
- ESD less likely recurrence and higher likelihood of en bloc resection in early gastric cancer meta-analysis (Surgical Endoscopy 2011 25(8): 2666-2677)
 - En bloc resection (OR 8.43; 95% CI 5.20-13.67)
 - Local recurrence (RR 0.13; 95% CI 0.04-0.41)
Thermal Ablation

• Thermal destruction of columnar tissue
• Acid inhibition
• Restored squamous epithelium
Radiofrequency Ablation: Halo360

Complete Response Dysplasia (CR-D) HGD Cohort (n=43)

<table>
<thead>
<tr>
<th></th>
<th>Intention to Treat</th>
<th>Per Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA</td>
<td>80%</td>
<td>91%</td>
</tr>
<tr>
<td>Sham</td>
<td>11%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Complete Response Intestinal Metaplasia (CR-IM)
All Patients (n=101)

![Bar chart showing Complete Response Intestinal Metaplasia (CR-IM) for All Patients (n=101). The chart compares Intention to Treat and Per Protocol with RFA and Sham treatments.]

Intention to Treat
- 77% for RFA
- 0% for Sham

Per Protocol
- 83% for RFA
- 0% for Sham

Stricture Occurrence

- 5 Strictures in 84 patients
 - 5 of 84 patients (6.0%)
 - 5 of 297 cases (1.7%)
- All strictures resolved with mean of 2 dilations
- All patients now complete response for IM (CR-IM)
Histological Progression

- Sham: 7/37 (18.9%)*
- RFA: 3/64 (4.7%)

Cancers
- HGD to CA, Sham: 4/18
 - 2 IMC (EMR+RFA)
 - 2 T1sm (surgery)
- HGD to CA, RFA: 1/25
 - 1 IMC (EMR+RFA)

Kaplan-Meier Ablation Durability Analysis

Duration of Complete Response-Intestinal Metaplasia (CR-IM)

Endoscopy 42(10): 781-789., 2010

ACG Regional Postgraduate Course - Williamsburg, VA
Copyright 2014 American College of Gastroenterology
Goals of Therapy: Tailor to Patient

- Complete elimination of intestinal metaplasia
 - Healthy patients who have long life expectancies
- Complete elimination of dysplasia
 - Older patients with co-morbidities
- Control of cancer (elimination of nodules)
 - Older patients with serious co-morbidities but anticipated prolonged survival

Cryotherapy HGD

N=98 with HGD
- 333 treatments
- Complications
 - Strictures 3%
 - Pain 2%
 - No perforations

Intervention: cryotherapy

N=60, completed Rx
Gastrointest Endosc 2010;71:680-5
Cryotherapy Focal Device

Recurrence Rates

<table>
<thead>
<tr>
<th>Study</th>
<th>Patient Number</th>
<th>Recurrence %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pech 2008</td>
<td>337</td>
<td>21.5%</td>
</tr>
<tr>
<td>Baddredine 2010</td>
<td>172</td>
<td>17%</td>
</tr>
<tr>
<td>Shaheen 2010</td>
<td>99</td>
<td>25%</td>
</tr>
<tr>
<td>Gupta 2013</td>
<td>592</td>
<td>16%</td>
</tr>
<tr>
<td>Ginsberg 2013</td>
<td>156</td>
<td>42%</td>
</tr>
</tbody>
</table>
Survival Free of Recurrence of CRIM Patients

Post-Therapy Surveillance

Questions

• Who should be treated for Barrett’s esophagus?
• What are the available therapeutic tools?
• What are the goals of therapy?
• Should patients be followed post-ablation?

• IMC, HGD, LGD selected
• Flat Mucosa: RFA, Cryotherapy, PDT
• Nodules: EMR, ESD
• Depending on patient, CRIM
• Follow-up should be done currently