Endoscopic Hemostasis in Non-Variceal UGI Bleeding

Kathy Bull-Henry, MD, FACG
Associate Professor of Medicine
Georgetown University Hospital

Etiology of Nonvariceal UGI Bleeding

- Nonvariceal UGI Bleeding
 - Peptic ulcer
 - Esophagitis/Gastritis
 - Mallory -Weiss Tear
 - Vascular ectasia
 - Dieulafoy’s
 - Tumor
 - Post sphincterotomy
 - Post polypectomy

- Hemosuccus pancreaticus
- Hemobilia
- Aortoenteric fistula

Enestvedt et al. GIE. 2008
Barkun et al. Am J Gastro. 2004
Goals of Endoscopic Therapy

• Control active bleeding
• Decrease rebleeding rates
• Improve outcomes
 – Decrease transfusion requirements
 – Decrease need for surgery
 – Decrease Length of stay
 – Decrease morbidity and mortality
 – Decrease cost

Which Lesions to Treat?

• Ulcer bleeding
 – Spurting arterial bleeding
 – Non-bleeding visible vessel
 – Adherent clot
• Mallory-Weiss tear
• Dieulafoy’s
• Vascular ectasia
• Post endoscopic sphincterotomy
• Post polypectomy
Ulcer Stigmata of Bleeding
Risk of Bleeding without Endotherapy

<table>
<thead>
<tr>
<th>Stigmata</th>
<th>Prevalence (%)</th>
<th>Rebleed (%)</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial bleed</td>
<td>10</td>
<td>85-100</td>
<td>yes</td>
</tr>
<tr>
<td>Visible Vessel</td>
<td>25</td>
<td>18-55 (mean-43)</td>
<td>yes</td>
</tr>
<tr>
<td>Adherent Clot</td>
<td>10</td>
<td>8-35</td>
<td>Yes / maybe</td>
</tr>
<tr>
<td>Oozing</td>
<td></td>
<td>10-27</td>
<td>yes</td>
</tr>
<tr>
<td>Flat Red/Black Spots</td>
<td></td>
<td>< 8</td>
<td>No / maybe</td>
</tr>
<tr>
<td>Clean Based</td>
<td>35%</td>
<td>< 3</td>
<td>no</td>
</tr>
</tbody>
</table>

ASGE Guideline GIE 2012

Results of Endoscopic Therapy

<table>
<thead>
<tr>
<th></th>
<th>Sham (n=23)</th>
<th>MPEC (n=21)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemostasis</td>
<td>13%</td>
<td>90%</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Blood Transfusions</td>
<td>5.4 units</td>
<td>2.4 units</td>
<td>0.002</td>
</tr>
<tr>
<td>Emergency Intervention</td>
<td>57%</td>
<td>14%</td>
<td>0.005</td>
</tr>
<tr>
<td>Hospital Stay</td>
<td>7.2 days</td>
<td>4.4 days</td>
<td>0.02</td>
</tr>
<tr>
<td>Deaths</td>
<td>13%</td>
<td>0</td>
<td>NS</td>
</tr>
</tbody>
</table>

Compared to medical therapy
- Reduced rebleeding
- Reduced surgery
- Reduced mortality
- MPEC can be used as monotherapy

Active ulcer bleeding - 24
Mallory-Weiss Tears - 17
Vascular malformations - 3

Laine L, NEJM. 1987;316:1613
Risk of Ulcer Rebleeding after Therapy

<table>
<thead>
<tr>
<th></th>
<th>Medical</th>
<th>Bipolar</th>
<th>Heater Probe</th>
<th>Epi Injection</th>
<th>Inject + bipolar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spurting</td>
<td>85-100</td>
<td>12</td>
<td>22</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>NBVV</td>
<td>18.55 (mean-43)</td>
<td>12</td>
<td>23</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>Adherent Clot</td>
<td>8-35</td>
<td>35</td>
<td>35</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>Oozing</td>
<td>10-27</td>
<td>n/a</td>
<td>n/a</td>
<td>0</td>
<td>n/a</td>
</tr>
<tr>
<td>Flat Spots</td>
<td>< 8</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Clean Based</td>
<td>< 3</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

CURE data

Adherent Clot Treatment

Rebleeding depends on lesion below the clot

<table>
<thead>
<tr>
<th></th>
<th>Rebleeding Rate (%)</th>
<th>Rebleeding Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kahi et al, 2005</td>
<td>Laine et al, 2009</td>
</tr>
<tr>
<td>Clot removed + endo Tx</td>
<td>8.5%</td>
<td>No difference</td>
</tr>
<tr>
<td>Clot not removed</td>
<td>24.7%</td>
<td>No Difference</td>
</tr>
</tbody>
</table>

- ASGE Guideline - Individualize treatment
- Vigorous irrigation and clot falls off
 - Treat lesion
- Clot remains after vigorous irrigation
 - Pre inject with epinephrine and remove with cold snare
 - Treat lesion: thermal tx or clip
Endoscopic Options
Bleeding Ulcers

- Coagulation
 - Bipolar, Heater probe
 - APC
- Injection
 - Epinephrine
- Mechanical ligation
 - Clips

Why Endoscopic Treatment Fails?

- Anticoagulation
- Diffuse bleeding
- Difficult position
 - Posterior wall
 - Upper lesser curve
Epinephrine Injection
Bleeding Ulcers

- 21-25G injection needle
- 1:10,000 dilution standard
 - 0.5 – 1.0 cc aliquots in four quadrants
 - Large volume injection (13-20 cc)
 - Within 2-3 mm of the active bleeding point in the ulcer base
- Achieves hemostasis by
 - mechanical tamponade and vasoconstriction

Clear the view
- Use in combination with another modality
 - Epi + thermal/mechanical better than epi alone

Lin et al. GIE 2002

Thermal Therapy

- Contact
 - Compress vessel (pressure) and coagulate (heat) to seal
 - Bipolar Probe
 - 15-20W; 10 sec per tamponade
 - Heater Probe
 - 30J, 2-4 pulses per station
 - Equally effective
- Non-contact
 - APC less studied in ulcer disease
 - No difference compared to epi + heater probe in RCT

Laine et al. GIE 2008;67:502
Endoscopic Hemoclips
Bleeding ulcers

- First developed in 1975
- Olympus- Quickclip 2
- Cook- Instinct & Triclip
- Boston Scientific- Resolution
- Ovesco- Over-the-Scope Clip

Meta-analysis
Clips vs Other Endoscopic Therapy

Clips vs Heater Probe
- Favors clips
 - Recurrent bleeding
 - Emergency surgery
- Favors Heater Probe
 - Initial hemostasis

Clips vs Injection + Thermal
- Favors clips
 - Recurrent bleeding
 - Emergency surgery
- Favors Injection + Thermal
 - Initial hemostasis

Clips vs Injection
- Favors Clips
 Recurrent bleeding
 Emergency surgery
- Favors Injection
 Initial hemostasis

Yuan Y. GIE 2008;68:339
Rationale

• Results were not statistically significant
• Studies were heterogeneous
• RCT comparing clips alone with other modalities limited

Hemoclips

Situations to prefer hemoclips
 – Patients with coagulopathy or ongoing anticoagulation needs
 – Retreatment of lesions that have rebled

Difficult situations for clips
 – Lesser curve
 – Cardia
 – Posterior bulb

Yuan Y. GIE 2008;68:339
Endoscopic Hemostasis

Summary

- **Epinephrine Injection (1:10,000)**
 - Less effective than thermal or clips used when alone

- **Thermal + firm pressure**
 - Bipolar & heater probe: Equally effective
 - APC: less well studied

- **Combination: Epinephrine injection + thermal**
 - Better than epinephrine alone

- **Mechanical**
 - Clips appear to be as effective as thermal alone or combination epi + thermal

Caps in GI Bleeding

- Place target en face
- Push folds aside
- Maintain optimal field of view
- Keep correct depth of field
- Place accessory within cap
- Stabilize endoscope

Sanchez-Yague et al. GIE 2012;76:169
Caps in GI Bleeding

GAVE: APC
- Most widely studied and used treatment
- 10 case series (n=192)
- 0.5-2 L/min, 20-80W, q2=6 weeks
- About 75-86% clinical success
- Complications (mild) in 20%
- No perforations

Cappell M. Nat Rev Gastro Hep 2010;7;214
GAVE: Radiofrequency Ablation

<table>
<thead>
<tr>
<th>Treatment Surface Area</th>
<th>Electrode Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra Long</td>
<td>520 mm² 13mm x 40mm</td>
</tr>
<tr>
<td>90 RFA</td>
<td>260 mm² 13mm x 20mm</td>
</tr>
<tr>
<td>APC</td>
<td>12 mm² n/a</td>
</tr>
</tbody>
</table>

- n = 21 pts with GAVE refractory to APC
- 18/21 (86%) transfusion independent after 6 months
- Hgb increased from 7.8 – 10.2
- Median ~ 2 treatment sessions
- 2 patients with minor acute bleeding and ulceration

McGarisk et al. GIE 2013;78:584
GAVE: Banding

- 14 patients
- EBL (9), APC (13)
- EBL 67% effective
- ETT 23% effective
- EBL fewer sessions (1.9 vs 4.7)

Wells et al. GIE 2008;68:231.

GAVE: Cryotherapy

- n = 12 patients
- 50% with complete response
- 50% partial response
- Decreased transfusion requirement 4.6 vs 1.7
- Average session time 5 minutes
- No complications

Cho et al. GIE 2008;68:895
Future Therapies

• Clotting Sprays
 – Hemospray
 – Fibrin Glue/Thrombin
 – Cyanoacrylate
• Over-the-Scope clips
• Endoluminal suturing
• Doppler guided hemostasis
• EUS-Guided angiotherapy

Hemospray

• Military Nanopowder
• Ankaferd: Turkish plant extract
 – Ganular mineral nanopowder
• Endoclot hemostatic powder
 – Privately funded Silicon Valley by surgeons and medical device experts
 – Absorbable Modified Polymers (AMP™) and a unique powder delivery system (applicator)
• TC-325 hemostatic powder- Hemospray
 – proprietary Inorganic powder
 – Hemospray powder cannot be taken in by mucosal tissues, absorption and metabolism of the powder does not occur in the body, thereby eliminating the risk of systemic toxicity
Hemospray

How it works

- **Hemospray**
- Contact with blood
 - Forms mechanical barrier
- Seals blood vessel
 - Absorbent powder increases the local concentration of clotting factors and enhances clot formation
- Clot formation
 - Powder cannot be taken in by mucosal tissues, thereby eliminating the risk of systemic toxicity
Hemospray Delivery System

- Syringe containing the Hemospray powder
- CO2 cannister
- Delivery catheter that is inserted into the working channel of the endoscope

Hemospray for Bleeding Ulcers
Prospective Trial

- Refractory bleeding ulcers
- n = 20
- Hemostasis: 19/20 (95%)
 - 1 patient had a pseudo-aneurysm requiring arterial embolization
- Recurrent bleeding 2 patients
 - Neither had active bleeding identified at the 72-hour endoscopy.
- No mortality, major adverse events, or treatment or procedure-related serious adverse events were reported during 30-day follow-up.

Hemospray for Bleeding Ulcers
Sung et al. Endoscopy 2011

- Tip of endoscope 1-2 cm from bleeding site
- Applied in 1-2 second spray bursts
- A- Bleeding gastric ulcer
- B- Catheter in place
- C- s/p hemospray tx
- D- after 3 days, ulcer base with flat pigment

Hemospray for Cancer-Related Bleeding
Chen et al. GIE 2012;75:1278

- Case series
- n = 5
- Hemostasis in all
- Rebleeding in 1 (had DIC)
Hemospray in Cancer-Related Bleeding
LeBlanc et al. GIE 2013;78:172

- n = 5
- Esophageal (2), Gastric (2), Pancreas (1)
- Hemostasis in all
- Rebleeding in 2
- Rebleeding in 1 after retreatment

- A- Bleeding gastric stromal tumor
- B- S/P Hemospray

Hemospray in Post-Therapeutic Bleeding
LeBlanc et al. GIE 2013;78:172

- n = 12
- EMR (9), Ampullectomy (2), Sphincterotomy (1)
- Hemostasis in all
- No rebleeding

- A- S/P EMR
- B- S/P Hemospray
- C- s/p ampullary resection
- D- s/p hemospray
Hemospray
Pros and Cons

• Pros
 – Non-contact
 – Simple to use
 – Covers large area

• Cons
 – Moisture can plug catheter tip
 – Loss of view after application
 – Must wash off coating for further treatment

Hemospray
Safety

• No complications reported

• Theoretical risk of CO2 gas embolization
 (low pressure venous system)

• Theoretical risk of local tissue and vascular injury
Topical Fibrin Glue and Topical Thrombin

- Fibrinogen with Factor XIII plus Human Thrombin forms clot
- Deliver through double-lumen catheter with double plunger syringe
- Not adequately studied for bleeding

Cyanoacrylate Spray
GI bleeding

- n = 6
- DU (3), Vascular ectasia (1)
- Post polypectomy (1)
- Hemostasis in all
- Rebleeding in 2
- No adverse events

- A- bleeding DU, s/p bipolar
- B- s/p hemoclip
- C- s/p cyanoacrylate

Bhat et al. GIE 2013;78:209,
Sukhpreet et al. GIE 2013;78:538
Over-the-Scope Clips

“Bear-Claw” Type

“Padlock” Type

Applicator cap on tip of scope with hand wheel to release clip

Over-the-Scope Clip Designs

<table>
<thead>
<tr>
<th>OTSC Feature</th>
<th>Relevance</th>
<th>Cap size (Scope Size)</th>
<th>11mm</th>
<th>12mm</th>
<th>14mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap size</td>
<td>Scope Size</td>
<td>11mm</td>
<td>12mm</td>
<td>14mm</td>
<td></td>
</tr>
<tr>
<td>Cap depth</td>
<td>Depth of tissue</td>
<td>3mm</td>
<td>6mm</td>
<td>3mm</td>
<td>6mm</td>
</tr>
<tr>
<td>Shape of Teeth</td>
<td></td>
<td>3mm</td>
<td>6mm</td>
<td>3mm</td>
<td>6mm</td>
</tr>
<tr>
<td>Rounded</td>
<td>Hemostasis</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Pointed</td>
<td>Perforation/ fistula</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Long pointed</td>
<td>Gastric perforation/ fistula</td>
<td>no</td>
<td>Only 6mm</td>
<td>no</td>
<td></td>
</tr>
</tbody>
</table>

Banerjee et al. GIE 2012;76:244
Over-the-Scope Clips

Over-the-Scope Clips in Acute GI Bleeding

- Compared Quickclip2, Resolution clip and OTSC in porcine model
- OTSC required:
 - Fewer clips to achieve hemostasis
 - Less time to achieve hemostasis

Kato M et al. GIE 2012;75:3
Over-the-Scope Clip

Ulcer Bleeding

- n = 7
- All prior failures
- Hemostasis in all
- 3/7 had recurrent bleeding
- One perforation

Gastric ulcer at angulus

Albert J et al. GIE 2011;74:390

Over-the-Scope Clip

GI Bleeding

<table>
<thead>
<tr>
<th>Lesion</th>
<th>n</th>
<th>Hemostasis</th>
<th>Rebleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duodenal Ulcer</td>
<td>12</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Gastric Ulcer</td>
<td>6</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Mallory-Weiss Tear</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dieulafoy</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Surgical anastomosis</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- n = 30, 6 centers
- All prior endo failures
- Hemostasis=96%
- 2 rebleeds (6%)
 - Tx’ed with injection
- No complications

Manta et al. Surg Endos. 2013
Over-the-Scope Clips
US Initial Experience

- For GI bleeding
 - n = 7 reported
 - All prior failures
 - Hemostasis in all

Baron et al. GIE 2012;76:202

Over-the-Scope Clip
US Initial Experience

<table>
<thead>
<tr>
<th>Complication</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complications in leak group</td>
<td>Generally safe</td>
</tr>
<tr>
<td>Bowel closure in 2 pts</td>
<td></td>
</tr>
<tr>
<td>Perforation in 1</td>
<td></td>
</tr>
</tbody>
</table>

Baron et al. GIE 2012;76:202
Over-the-Scope Clip
Pros and Cons

- **Pros**
 - Entraps large amount of tissue
 - Band ligation technique

- **Cons**
 - Withdraw scope to mount OTSC
 - Endoscopic view impaired
 - Suction traps fluid in cap
 - Limited scope angulation with cap

Endoluminal Suturing
“Eagle Claw”

- **Pros**
 - Close large defects

- **Cons**
 - Double channel gastroscope
 - Withdraw endoscope to mount device
 - Training needed
 - Cost
Endoscopic Doppler Ultrasound in GI Bleeding

<table>
<thead>
<tr>
<th></th>
<th>+ Doppler before endo tx (n)</th>
<th>+ Doppler after initial endo tx (n)</th>
<th>+ Doppler after initial endo tx (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spurting</td>
<td>3</td>
<td>2</td>
<td>66.7</td>
</tr>
<tr>
<td>NBVV</td>
<td>19</td>
<td>7</td>
<td>36.8</td>
</tr>
<tr>
<td>Adherent clot</td>
<td>7</td>
<td>1</td>
<td>14.2</td>
</tr>
<tr>
<td>Flat spot</td>
<td>5</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Oozing</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>11</td>
<td>28.9</td>
</tr>
</tbody>
</table>

Initial Endo tx: epi (1:20,000) and/or MPEC
Additional Endo tx: MPEC and/or clip

Jensen D et al. GIE 2010;71:AB113

Endoscopic Doppler Ultrasound in GI Bleeding

<table>
<thead>
<tr>
<th></th>
<th>30 day Rebleed rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 matched controls with SRH without doppler, Endo tx by visual cues</td>
<td>28 %</td>
</tr>
<tr>
<td>38 pts with + doppler with endo tx until eradication of doppler signal</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Jensen D et al. GIE 2010;71:AB113
EUS-Guided Angiotherapy for GI Bleeding

• EUS identify bleeding vessel
• Fine needle injection
 – Sclerosants
 – Cyanoacrylate

Small series of 5
Severe refractory bleeding
EUS-guided alcohol or cyanoacrylate injection
 – Pancreatic pseudoaneurysm,
 – Duodenal Dieulafoy
 – Duodenal ulcer
 – GI stromal tumors
Hemostasis in all
No complications

EUS-Guided Angiotherapy for GI Bleeding
Limitations

- Intraluminal blood clots
 - interfere with identification of the bleeding source
 - Interfere with EUS transmission
- Cause extraluminal bleeding
 - May need salvage angiographic or surgical intervention
- Logistics
 - Scope availability
 - Technically challenging
 - Special expertise
- Glue damage of scope

Song et al. GIE 2012;75:933

Soft Coagulation Hemostatic Forceps

- 50 Watts, 2-3 seconds

Saltzman et al. GIE 2010;72:796
Soft Coagulation Hemostatic Forceps

Bleeding Ulcers

<table>
<thead>
<tr>
<th></th>
<th>Soft Coagulation</th>
<th>Clips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemostasis</td>
<td>85%</td>
<td>79%</td>
</tr>
<tr>
<td>Recurrent Bleeding</td>
<td>2%</td>
<td>10%</td>
</tr>
</tbody>
</table>

96 patients

J Gastro 2010;45:501

<table>
<thead>
<tr>
<th></th>
<th>Soft Coagulation Hemostatic Forceps</th>
<th>Heater Probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemostasis</td>
<td>67%</td>
<td>67%</td>
</tr>
<tr>
<td>Rebleeding</td>
<td>8%</td>
<td>8%</td>
</tr>
<tr>
<td>Perforation</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Need for surgery</td>
<td>2%</td>
<td>2%</td>
</tr>
</tbody>
</table>

111 patients

Okazaki et al. Gastroenterology 2013;144S-511

Endoscopic Hemostasis in Nonvariceal Bleeding

Summary

- Thermal alone, Clips alone, or Combination Epi + Clips/Thermal: effective
- Don’t use epi alone
- Clips popular but expensive
- APC for GAVE
- Future methods:
 - Hemospray promising
 - Doppler US promising