Surgical Management of IBD in the Age of Biologics

Lisa S. Poritz, M.D
Associate Professor of Surgery
Division of Colon and Rectal Surgery

Objectives

• Discuss surgical management of IBD
 – When to operate
 – What operation to do

• Discuss how have biologics changed surgical management
 – Are we operating less?
 • Are we doing different operations?
 – Is there an increase in complications?
Indications for Surgery in IBD

• Intractability (Failure of Medical Management)
• Complications of Disease
 – Obstruction / Stricture
 – Abscess/phlegmon
 – Perforation
 – Fistula
 – Bleeding
• Complications of Medical Management
• Cancer
• Patient preference

Ulcerative Colitis
Emergent / Urgent Surgery for UC

- Indications
 - Perforation
 - Sepsis
 - Bleeding
 - Toxic megacolon

- Procedure
 - Total abdominal colectomy, end ileostomy

UC Surgical Options

- Total abdominal proctocolectomy
- Koch pouch
- Ileal pouch anal anastomosis
Total abdominal Proctocolectomy

- “Gold standard”
- Removes all colonic and rectal tissue
- Permanent ileostomy
- Generally only performed in the older patient population

Koch Pouch

- Removes all colonic and rectal mucosa
- Continent ileostomy
- Pouch intubated several times a day
- Few centers perform Koch Pouch
- 50% complication rate / re-operative rate
Ileal Pouch Anal Anastomosis (IPAA)

- IPAA
 - Cures disease
 - “normal” defecation
 - Essentially no risk of colorectal cancer
 - Ileostomy is temporary
 - 90% + success rate
 - Main complication is pouchitis
IPAA results

- Average Patient
 - 5-6 BM/day, possibly 1/night
 - Continent
 - Takes fiber/anti-motility agent

Who is not a candidate for IPAA?

- Patients with significant incontinence / sphincter disruption
- Morbid obesity
- Patients whose lifestyle won’t allow for frequent bowel movements.
Crohn’s Disease

• Surgical Management Issues
 – Never cured
 – Multiple surgical resections can lead to short gut
 – Perianal disease may require permanent diversion
Ileocolonic disease

- Limited uncomplicated ileocolonic disease
 - Resection and anastomosis
 - Open or laparoscopic
- Phlegmon
 - Resection and anastomosis
 - Open or laparoscopic (depends on size of phlegmon)
- Abscess
 - Percutaneous drainage followed by resection

Intrabdominal Abscess

- Usually in association with ileocolonic disease
 - CT guided percutaneous drainage if possible
 - Intravenous antibiotics 5-7 days
 - High dose steroids
 - Ileocolonic resection
 - Use of ileostomy depends on amount of residual inflammation/infection
Intestinal Complications Of Crohn’s Disease

OBSTRUCTION

String sign
Small Bowel Disease

- Management Issues
 - Tends to be more virulent than ileocolonic disease
 - Recurs more frequently
 - Concern for short bowel

- Surgical options
 - Resection
 - Strictureplasty
 - Bypass (rarely used)
Strictureplasty

- Saves bowel, no resection
- Appropriate for short isolated strictures
- Can perform multiple strictureplasties at one time
- When disease recurs it recurs at a site distinct from the strictureplasty
Heineke-Mikulicz

Finney Stictureplasty
Other Strictureplasty Methods

Jaboulay Strictureplasty

Michelassi Strictureplasty

Fistulas

- Intrabdominal
 - Entero-entero
 - Entero-colonic
 - Entero or colo-vesicle
 - Entero or colo-vaginal
- Enterocutaneous
- Perianal
- Rectovaginal
Intestinal Complications of Crohn’s Disease

FISTULA

Mesenteric
Entero-enteric
Entero-vesical
Retroperitoneal
Entero-cutaneous
Surgical Treatment of Intraabdominal Fistulas

- Resect the diseased intestine
- Rarely need to resect the organ/tissue that has been fistulized to
 - Normal small bowel and colon can be left in situ
 - Rarely resect bladder, vagina
Colonic +/- Rectal Disease

- Sometimes difficult to distinguish from UC
- Limited resection vs total abdominal colectomy
- Options are limited if rectum involved
 - Usually will also have perianal disease
 - Often the patient will need a stoma

Segmental Colonic Disease

Segmental Resection
- Spares bowel
- May need further surgery

Total Abdominal Colectomy
- “once and done”
Segmental Disease

- Right sided disease
 - Ileocolectomy with ileotransverse anastomosis
 - TAC
- Transverse colonic disease
 - Hemicolecotomy vs. TAC
- Left sided disease
 - TAC
 - Left hemicolecotomy

Perianal Disease

- Skin tags
- Abscess
- Fistula
- Fissures
- cancer
Perianal Disease

- Abscess
- Fistula
Abscess Sites

Perianal Abscess Treatment

- Treatment goal: Control Sepsis
- Simple
 - incision and drainage
- Complex
 - incision and drainage
 - catheters
 - irrigation
 - Cipro / Flagyl
Perianal Fistulae

- Epithelialized tract from anal canal to skin
- Source
 - Infected gland in anal canal
 - Ulceration of the rectal wall or anal canal erodes through the sphincters
- Location
 - Only 1/3 are “simple”
 - Usually multiple openings, complex fistulae: rectovaginal and rectourethral
 - Open onto: scrotum, labia, thighs, buttocks
- Watering Can Perineum
- Often minimally symptomatic
 - Pain suggests underlying abscess

Fistulas

- Evaluation
 - Exam under anesthesia (EUA)
 - gold standard
 - can diagnose and treat simultaneously
 - Fistulgram
 - MRI
 - US
- Treatment goals
 - control sepsis, prevent recurrent abscesses
 - preserve function if possible
Setons

- Soft, non-cutting
- Provide drainage
- Control sepsis
- Often “permanent”

Complex Fistulas

- Setons to control fistulae
- Drains to control and irrigate abscess cavities
- Maximal medical therapy
- Often require proctectomy
Rectovaginal Fistulas

- 5-10% of patients with CD proctitis
- usually an indication of severe rectal disease
- Poor prognosis for retaining rectum
- Local repairs are possible with quiescent rectal disease
 - high recurrence rate with flares

Perianal Fistula Management With Infliximab

- Placement of prophylactic setons in patients with perianal fistulae prior to Infliximab therapy
 - 3 doses of Infliximab at 0, 2, 6 weeks
 - Removed between 2nd and 3rd infusions
- Placement of all patients on prophylactic antibiotics during treatment
- High index of suspicion for development of abscesses.
Ileostomy

• Used to protect anastomosis when disease or tissues are poor, long term steroids
• Also used to divert the fecal stream from proctitis or perianal disease
 – Symptomatic relief
 – Recurs when stoma closed

Are biologics decreasing the number of surgical procedures in IBD patients?

• Yes?
 – Increase?
 – Decrease?
• No?
• Different?
Decrease in Surgery

• Meta-analysis
 – Decrease in major surgery for CD
 – Unclear in UC
 – Is follow-up long enough?
 • Maybe it just delays surgery

Costa et al, Inflamm Bowel Dis 2013: 19:2098-2110

Increase in surgery / no change in resections

• Nationwide Inpatient Sample (CD: 1993-2004)
 – Resections
 • No change in Right hemicolecotomy
 • Slight decrease in left colon and rectal resections
 – Fistulas
 • Increase in small intestinal fistula surgery by 60%
 • No change at other sites
 – Perianal disease
 • Number of perianal abscess drainages tripled
 – Overall: no change in bowel resections, c/w other studies

Is the Surgery Different?

- Penn State Hershey IBD Center Data
- 2 Studies
 - 1998-2000
 - 1989-2009

Purpose

To evaluate the role of Infliximab in supplanting surgery for fistulizing Crohn’s disease
Methods

• Retrospective chart review of all patients who received Remicade at the Milton S. Hershey Medical Center from 9/98-10/00 for fistulizing Crohn’s disease
• Fistulae were divided into 5 categories
 – perianal (PA)
 – enterocutaneous (EC)
 – peristomal (PS)
 – intraabdominal (IA)
 – rectovaginal (RV)

Fistula Response to Remicade

• 23% of patients had a complete response to Remicade
• 46% of patients had a partial response to Remicade
• 31% of patients had no response to Remicade
Surgical procedures in 14 patients

<table>
<thead>
<tr>
<th>PROCEDURE</th>
<th># PERFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUA, abscess drainage ± seton</td>
<td>2</td>
</tr>
<tr>
<td>Anal dilatation</td>
<td>2</td>
</tr>
<tr>
<td>Bowel resection with stoma revision</td>
<td>4</td>
</tr>
<tr>
<td>Ileocolic resection</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Post-Remicade Surgical Intervention

<table>
<thead>
<tr>
<th>RESPONSE</th>
<th>TOTAL</th>
<th>SURGERY</th>
<th>NO SURGERY</th>
<th>PERSISTANT FISTULA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Partial</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>None</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>26</td>
<td>14</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>
Remicade treatment results by fistula site

<table>
<thead>
<tr>
<th>FISTULA SITE</th>
<th>TOTAL</th>
<th>COMPLETE RESPONSE</th>
<th>SURGERY</th>
<th>PERSISTANT FISTULA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>9</td>
<td>4 (44%)</td>
<td>4 (44%)</td>
<td>1 (12%)</td>
</tr>
<tr>
<td>EC</td>
<td>6</td>
<td>0</td>
<td>3 (50%)</td>
<td>3 (50%)</td>
</tr>
<tr>
<td>RV</td>
<td>3</td>
<td>1 (33%)</td>
<td>0</td>
<td>2 (66%)</td>
</tr>
<tr>
<td>PS</td>
<td>4</td>
<td>0</td>
<td>4 (100%)</td>
<td>0</td>
</tr>
<tr>
<td>IA</td>
<td>4</td>
<td>1 (33%)</td>
<td>3 (75%)</td>
<td>0</td>
</tr>
</tbody>
</table>

*These patients failed Remicade but refused surgery for their persistent fistulae.
PA=perianal fistula, EC=enterocutaneous fistula, RV=rectovaginal fistula, PS=peristomal fistula, IA=intraabdominal fistula

Study Conclusions

- Our overall complete fistula response rate was 23% of which perianal fistulae responded the best with a 44% healing rate.
- In spite of this success, over half the patients in this series still required surgical intervention.
- However, there appeared to be a higher percentage of patients operated on for abscess and stricture formation, presumably as a consequence of rapid healing, in the context of Infliximab therapy.
1989-2009 Study

- Patients who underwent ileocolectomy for CD from 1989-2009
 - Retrospective Chart Review
 - Divided into Infliximab and No Infliximab groups
 - Surgical index: number of ileocolectomies / duration of disease
 - Length of bowel resected

Results

<table>
<thead>
<tr>
<th></th>
<th>Infliximab</th>
<th>No Infliximab</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Patients</td>
<td>83</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Age at Diagnosis</td>
<td>24.9 ± 9.3</td>
<td>29.8 ± 13.6</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of ileocolectomies</td>
<td>1.4 ± 0.5</td>
<td>1.5 ± 0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Time to first ileocolectomy</td>
<td>6.8 ± 6.6</td>
<td>7.5 ± 7</td>
<td>0.4</td>
</tr>
<tr>
<td>Surgical Index</td>
<td>0.12 ± 0.09</td>
<td>0.12 ± 0.01</td>
<td>0.8</td>
</tr>
<tr>
<td>Extent of Resection (TI)</td>
<td>24.17 ± 13.7</td>
<td>25.2 ± 12.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Extent of Resection (Cecum)</td>
<td>6.2 ± 3</td>
<td>9.4 ± 1.0</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Infliximab</th>
<th>No Infliximab</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Patients</td>
<td>83</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Age at Diagnosis</td>
<td>24.9 ± 9.3</td>
<td>29.8 ± 13.6</td>
<td>0.01</td>
</tr>
<tr>
<td>Number of ileocolectomies</td>
<td>1.4 ± 0.5</td>
<td>1.5 ± 0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Time to first ileocolectomy</td>
<td>6.8 ± 6.6</td>
<td>7.5 ± 7</td>
<td>0.4</td>
</tr>
<tr>
<td>Surgical Index</td>
<td>0.12 ± 0.09</td>
<td>0.12 ± 0.01</td>
<td>0.8</td>
</tr>
<tr>
<td>Extent of Resection (TI)</td>
<td>24.17 ± 13.7</td>
<td>25.2 ± 12.7</td>
<td>0.6</td>
</tr>
<tr>
<td>Extent of Resection (Cecum)</td>
<td>6.2 ± 3</td>
<td>9.4 ± 1.0</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Summary

- Study 1
 - No decrease in surgery
 - Increase in strictures
- Study 2
 - No change in time to ileocolectomy
 - No change in surgical index
 - Decreased length of cecum resected

Are Surgical Complications Increased in patients who are treated with biologic therapy?
Are Surgical Complications Increased in patients who are treated with biologic therapy?

- Yes, but it depends on what you read.

Surgical complications with Biologic Therapy

- Infectious complications
 - OR 1.56
 - Rate of complications: 21.7% vs 14.5%
 - Absolute risk increase 7.2%
 - Number needed to harm 14
- Non-Infectious complications
 - OR 1.57
 - Rate of complications: 27.9% vs 18.8%
 - Absolute risk increase 9.1%
 - Number needed to harm 11
- Total Complications
 - OR 1.73
 - Rate of complications: 43.8% vs 28.8%
 - Absolute risk increase 15%
 - Number needed to harm 7

Narula et al, Aliment Pharmacol Ther 2013, 37: 1057-1064
Surgical complications with Biologic Therapy

- CD only
 - Increase in infectious complications
 - Increase in total complications
 - Trend toward increase in non-infectious complications
- UC only
 - No significance

Increase in complications?

Yes
- Narula et al
 - Meta-analysis

No
- Mukta et al
 - UC/CD, laparoscopy
 - 142 / 376 (yes / no biologic)
- Waterman et al
 - Retrospective case control
 - 195 / 278 (yes / no biologic)
Objectives

• Discuss surgical management of IBD
 – When to operate
 – What operation to do

• Discuss how have biologics changed surgical management
 – Are we operating less?
 • Are we doing different operations?
 – Is there an increase in complications?

Objectives

• Discuss surgical management of IBD
 – When to operate
 – What operation to do

• Discuss how have biologics changed surgical management
 – Are we operating less? **NO**
 • Are we doing different operations?
 – Is there an increase in complications?
Objectives

• Discuss surgical management of IBD
 – When to operate
 – What operation to do

• Discuss how have biologics changed surgical management
 – Are we operating less? **NO**
 • Are we doing different operations? **YES**…
 – Is there an increase in complications?

Objectives

• Discuss surgical management of IBD
 – When to operate
 – What operation to do

• Discuss how have biologics changed surgical management
 – Are we operating less? **NO**
 • Are we doing different operations? **YES**…
 – Is there an increase in complications? **DEPENDS**