Screening and Surveillance for Gastric and Esophageal Cancer

Kenneth K. Wang, MD, FACG
Director of Advanced Endoscopy
Russ and Kathy Van Cleve Professor of Gastroenterology Research
Mayo Clinic, Rochester, MN

Surveillance ???
Crowd Thinking

Goals

• Challenge audience to re-think screening for upper tract disease
• Discuss new methods to perform screening
• Understand the new evidence regarding surveillance for esophageal and gastric cancers
Case

- 54 yo WM smoker with 25 pack year history
- BMI = 35
- PMH
 - MI age 51
 - HTN, High lipids
- Heartburn symptoms for 5 years, worse over last year
- Past FH of esophageal cancer in father and brother

Question

- Would you screen this patient?
 1. Yes
 2. No
Today

- There are no guidelines that recommend mass screening for Barrett’s esophagus nor esophageal adenocarcinoma.
- The vast majority of esophageal cancers are only detected at late stage symptomatic presentation.
- Large amount of resources are being spent on practices that are of little benefit.
Why Consider Screening for Barrett’s Esophagus?

- 90% of patients with esophageal cancer never were known to have BE (Hvid-Jensen New England Journal of Medicine 365(15): 1375-1383, 2011)
- Over half of patients with BE do not have a history of reflux symptoms (Ronkainen, Gastroenterology 129(6): 1825-1831, 2005)
- Most patients with BE related cancer present with late stage symptoms of dysphagia (Gibbs Journal of the National Medical Association 99(6): 620-626, 2007)

2011 AGA Barrett’s Guideline

- Screening
 - Age > 50
 - Male (OR=1.5 to 3.0)
 - White (OR=4 to 6)
 - Chronic GERD (OR=6 to 10, dose response)
 - Hiatal hernia (OR= 2.1)
 - ↑ BMI (OR=1.4 for BMI > 25 or 30)
 - intra-abdominal distribution of body fat (OR=2.8 for all BE, 4.3 for LSBE)
GERD and Columnar Lined Esophagus

<table>
<thead>
<tr>
<th>CLE Length</th>
<th>Prevalence of CLE, n=1058, n (%)</th>
<th>Prevalence of CLE with intestinal metaplasia, n=1058, n (%)</th>
<th>Proportion of patients with intestinal metaplasia in all CLE, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 cm</td>
<td>31 (2.9)</td>
<td>9 (0.8)</td>
<td>29</td>
</tr>
<tr>
<td>1–3 cm</td>
<td>167 (15.9)</td>
<td>98 (9.3)</td>
<td>58.7</td>
</tr>
<tr>
<td>≥3 cm</td>
<td>49 (9.5)</td>
<td>43 (4.0)</td>
<td>87.8</td>
</tr>
</tbody>
</table>

- 1058 pts with symptomatic GERD
 - Columnar lined esophagus in 23%
 - SIM in 14%
- Family history of GERD nor BE predictive of BE
- Heartburn >5 years predictive of BE, but not regurgitation or daily heartburn

Balasubramanian, Am J Gastroenterol 2012; 107:1655–1661

Screening : EGD

- Screening tools: Sedated EGD
 - Costs
 - Modeling studies: assumptions (?) limited real data¹,²
 - Performance characteristics
 » Sensitivity and specificity not optimal³
 » Reproducibility of findings ?
 - Negative predictive value of normal endoscopy is unclear

¹Inadomi, Ann Int Med 2003,
²Barbiere Gastroenterology 2009
³Kim Gastroenterology 1994
uTNE

- Accurate\(^1\)
- Well tolerated
- ? Preferred over sEGD\(^2\)
- Lower direct and indirect costs
- Cost effective in modelling studies in GER subjects\(^3\)
- ? Patient reluctance
 - Acceptance in population
- ? MD reluctance\(^4\)
- Comparative yield and accuracy ?

\(^1\)Jobe Am J Gastro 2006,
\(^2\)Saien Am J Gastro 2002,
\(^3\)Nietert Gastrointest Endo 2003
\(^4\)Atkinson Am J Gastro 2008

CytoSponge

- Studied in UK Primary Care Setting
 - 504 pts from 12 practices
 - Acceptability: 19% of pts asked participated
 - 3 could not swallow capsule
 - Total cases of BE n=15 (3%)
 - Sensitivity 73% (BE > 1 cm length)
 - Increased to 90% for BE > 2 cm
 - Specificity 94%
 - Low anxiety in 84%

Kadri BMJ 2010
Screening with the Sponge

Benaglia, Gastroenterology 2013;144:62–73

Who Should Undergo Surveillance?

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Criteria</th>
</tr>
</thead>
</table>
| ACG (2008) | • Potential to prolong life expectancy with therapeutic intervention for Ca
 • Weigh age/comorbidities |
| AGA (2011) | • Patients with reasonable life expectancy
 • Tolerate treatment of dysplasia/cancer |
Describing Barrett’s Esophagus

1. Locate gastro-esophageal junction
2. Recognise the squamocolumnar junction
3. Describe extent of metaplasia consistently

Current Status

- Diagnosis
 - Endoscopy
 - EMR for visible lesions
- Surveillance biopsies
 - Four quadrant biopsies
 - Every cm for HGD
 - Every two cm for LGD

• Diagnosis
 • Endoscopy
 • EMR for visible lesions
• Surveillance biopsies
 • Four quadrant biopsies
 • Every cm for HGD
 • Every two cm for LGD
Updated ACG guidelines for Barrett’s esophagus: Surveillance intervals according to dysplasia grade

Chronic GERD Symptoms

Screening Endoscopy with Biopsies

Negative for dysplasia

Repeat x 1

Low-grade dysplasia

Repeat x 1

Annual surveillance until no dysplasia

High-grade dysplasia

Repeat endoscopy with biopsy

Expert pathologist opinion

Wang and Sampliner AJG 2008

Limitations of Endoscopic Biopsy Surveillance of Barrett’s Esophagus

• Interobserver variability in dysplasia interpretation

• *Most patients never develop cancer*
 – Incidence 0.5%/year
The Case for Barrett’s Surveillance
5-year Survival of Surveyed and Non-Surveyed Cases

![Bar chart showing 5-year survival rates for surveyed and non-surveyed cases.]

- Surveyed cases: 73.3%, 52.9%, 90.0%
- Non-surveyed cases: 0.0%, 20.0%, 20.0%

Corley et al, Gastroenterology 2002; 122:633

Lack of Efficacy of Surveillance

- Case control study from Northern California Kaiser program
- 38 cases of individuals diagnosed with esophageal and GE junctional cancer
- 101 controls
- Surveillance within 3 years not associated with a decreased risk of death from esophageal adenocarcinoma (adjusted odds ratio, 0.99; 95% confidence interval, 0.36–2.75)

Corley, Gastroenterology, 2013
Non-dysplastic Barrett’s oesophagus

- Regular mucosal pattern
- Regular vascular pattern

Dysplastic Barrett’s oesophagus

- Irregular mucosal pattern
- Irregular vascular pattern
- Abnormal blood vessels

Kara et al. Gastrointest. Endosc, 2006

Meta-Analysis NBI for HGD

- Pooled sensitivity and specificity
- Per patient analysis

Endoscopy 2010; 42: 351 – 359
Narrow Band Imaging for Dysplasia

<table>
<thead>
<tr>
<th>Study</th>
<th>Pt # (HGD/Total)</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sharma 2006</td>
<td>7 / 51</td>
<td>100%</td>
<td>98.7%</td>
</tr>
<tr>
<td>Kara (AFI+NBI) 2006</td>
<td>14 / 20</td>
<td>96%</td>
<td>93%</td>
</tr>
<tr>
<td>Wolfsen 2008</td>
<td>28 / 66</td>
<td>100%</td>
<td>SR no increased dysplasia</td>
</tr>
<tr>
<td>Singh 2009</td>
<td>3/21</td>
<td>89%</td>
<td>75%</td>
</tr>
<tr>
<td>Curver AFI-NBI 2010</td>
<td>55/87</td>
<td>65%</td>
<td></td>
</tr>
<tr>
<td>Sharma 2013</td>
<td>14/113</td>
<td>53%*</td>
<td>100%</td>
</tr>
<tr>
<td>Giachino (AFI+NBI) 2013</td>
<td>14/42</td>
<td>71%</td>
<td>46%</td>
</tr>
</tbody>
</table>

Probe Laser Confocal Endomicroscopy

- 2 mm probe passes through biopsy channel
- 12 frames per second near real time
- IV fluorescein
Miami Classification

Non dysplastic BE
- Uniform villiform architecture
- Columnar cells (block arrow)
- Dark “goblet” cells (thin arrow)

Dysplastic BE
- Villiform structures
- Dark, irregularly thickened epithelial borders (arrow)
- Dilated irregular vessels (block arrow)

Wallace MB et al Endoscopy 2011

Accuracy of pCLE for Dysplasia

- Multicenter, prospective RCT
- Comparison of HD-WLE alone to HD-WLE + pCLE
- 101 pts in 5 centers
- HD WLE + pCLE
 - Sensitivity 68%
 - Specificity 88%
- HD WLE
 - Sensitivity 34%
 - Specificity 92%

Sharma, Gastrointestinal Endoscopy 74(3): 465-472, 2011
Gastric Cancer

- Male predominant disease 1.6:1
- 21,320 will be diagnosed in 2012 in US
 - 10,540 will die (49%)
- Decreasing over last decades (1.5% per decade)

Pathway to Gastric Cancer

Chronic Gastritis

Gastric Intestinal Metaplasia
NBI Classification Mucosa of Gastric Polyps

Omori et al. BMC Gastroenterology 2012, 12:17

NBI Classification of Capillary Pattern Gastric Polyps
Classification of Gastric Polyps

<table>
<thead>
<tr>
<th>Polyp Classification</th>
<th>Fundic gland</th>
<th>Hyperplastic</th>
<th>Adenoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small round pattern</td>
<td>++++</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Prolonged pattern</td>
<td>-</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Villous or ridged</td>
<td>+</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Honeycomb</td>
<td>++++</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Dense vascular</td>
<td>-</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>Core vascular</td>
<td>+</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>Fine network, unclear</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Effects of H. Pylori Eradication

- Effect on gastric histology 1 yr after HP eradication
- RCT of treatment (n=295) versus no treatment (n=292)
- Decreased inflammation
- No change in IM, atrophy

Sung et al, Gastroenterology 119:7–14, 2000
Risk of Cancer Developing in Gastric Mucosa (Netherlands)

Annual incidence of gastric cancer

- 0.1% for patients with atrophic gastritis
- 0.25% for intestinal metaplasia
- 0.6% for mild-moderate dysplasia
- 6% for severe dysplasia within 5 years

Sampling Protocols

- Devries et al 2010: 12 non-targeted biopsies and additional biopsies of any lesions
 - Primarily found in incisura
 - Second most common antrum
 - Third was less curve
- A protocol of 7 biopsies found 97% of IM/dysplasia
 - 3 antrum
 - 1 incisura
 - 3 body (1 greater, 2 lesser curve)
Survival Benefit of Gastric Cancer Screening

<table>
<thead>
<tr>
<th>Case-control studies</th>
<th>Number of participants</th>
<th>Age (year)</th>
<th>Follow-up (years)</th>
<th>Effect measure (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kakoski et al. (2008)</td>
<td>154 cases+58 controls</td>
<td>50–60</td>
<td>3–5</td>
<td>HR 0.88 (0.56–1.20)</td>
</tr>
<tr>
<td>Kohira et al. (1989)</td>
<td>51 cases+178 controls</td>
<td>70–80</td>
<td>5</td>
<td>HR 1.02 (0.68–1.53)</td>
</tr>
<tr>
<td>Fukao et al. (1993)</td>
<td>151 cases+97 controls</td>
<td>50–60</td>
<td>10</td>
<td>HR 1.26 (0.80–1.98)</td>
</tr>
<tr>
<td>Abe et al. (1995)</td>
<td>820 cases+2413 controls</td>
<td>40–60</td>
<td>5</td>
<td>HR 1.22 (0.86–1.74)</td>
</tr>
</tbody>
</table>

Prospective studies

<table>
<thead>
<tr>
<th>Studies</th>
<th>Number of cases</th>
<th>Age (year)</th>
<th>Follow-up (years)</th>
<th>Effect measure (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obihiro et al. (1973)</td>
<td>12789 cases</td>
<td>40–70</td>
<td>10</td>
<td>RR 1.10 (0.95–1.28)</td>
</tr>
<tr>
<td>Muisse et al. (1964)</td>
<td>7008 cases</td>
<td>40–60</td>
<td>10</td>
<td>RR 1.02 (0.83–1.27)</td>
</tr>
<tr>
<td>Inaba et al. (1999)</td>
<td>24336 cases</td>
<td>40–70</td>
<td>10</td>
<td>RR 1.26 (0.95–1.68)</td>
</tr>
<tr>
<td>Miase et al. (2003)</td>
<td>87152 cases</td>
<td>40–70</td>
<td>10</td>
<td>RR 1.15 (0.95–1.27)</td>
</tr>
<tr>
<td>Lee et al. (2006)</td>
<td>42569 cases</td>
<td>40–70</td>
<td>10</td>
<td>RR 1.10 (0.90–1.35)</td>
</tr>
</tbody>
</table>

Table 2: Japanese data for reduction in death from gastric cancer by screening

ESGE Recommendations

- Intestinal Metaplasia or Atrophy
- NBI or Chromoendoscopy
- Atrophy or IM
- Treatment of H. pylori
- Surveillance every 3 years
- Dysplasia
 - Visible lesion resect
 - High grade lesion follow-up 6–12 months
- Low grade lesion follow-up 12 months

ASGE Recommendations

• Gastric polyps
 – Adenomatous: 1 year after removal, Repeat surveillance 3-5 years
 – Hyperplastic: No follow-up

• Intestinal metaplasia/atrophy
 – Surveillance if increased risk due to ethnicity or family history
 – Topographically mapping indicated
 – High grade dysplasia should be resected

Gastrointestinal Endoscopy 63: 570, 2006

Mayo Rochester Barrett’s Research Group