Metabolic Liver Disease: What’s New in Diagnosis and Therapy?

Bruce R. Bacon, M.D.
James F. King M.D. Endowed Chair in Gastroenterology
Professor of Internal Medicine
Division of Gastroenterology and Hepatology
Saint Louis University Liver Center
St. Louis, Missouri

• I have nothing to disclose regarding this topic.
Metabolic (Inherited) Liver Disease

- Hereditary hemochromatosis
- Wilson disease
- Alpha-1-antitrypsin deficiency
- Cystic fibrosis
- Others

Classification of Inherited Iron Overload Syndromes

- Hereditary Hemochromatosis
 - HFE-related
 - C282Y/C282Y
 - C282Y/H63D
 - Other HFE mutations
 - Non-HFE-related
 - Hemojuvelin (HJV)
 - Transferrin receptor-2 (TfR-2)
 - Ferroportin (SLC40A1)
 - Hepcidin (HAMP)
 - African iron overload
Typical Symptoms in Patients with HH

<table>
<thead>
<tr>
<th>Symptom</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakness, lethargy, fatigue</td>
<td>40-85</td>
</tr>
<tr>
<td>Apathy, lack of interest</td>
<td>40-85</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>30-60</td>
</tr>
<tr>
<td>Weight loss</td>
<td>30-60</td>
</tr>
<tr>
<td>Arthralgias</td>
<td>40-60</td>
</tr>
<tr>
<td>Loss of libido, impotence</td>
<td>30-60</td>
</tr>
<tr>
<td>Amenorrhea</td>
<td>20-60</td>
</tr>
<tr>
<td>Congestive heart failure symptoms</td>
<td>0-40</td>
</tr>
</tbody>
</table>

Common Physical Findings in HH

<table>
<thead>
<tr>
<th>Finding</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatomegaly</td>
<td>60-85</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>50-95</td>
</tr>
<tr>
<td>Skin pigmentation</td>
<td>40-80</td>
</tr>
<tr>
<td>Arthritis (second, third metacarpophalaneal joints)</td>
<td>40-60</td>
</tr>
<tr>
<td>Clinical diabetes</td>
<td>10-60</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>10-40</td>
</tr>
<tr>
<td>Loss of body hair</td>
<td>10-30</td>
</tr>
<tr>
<td>Testicular atrophy</td>
<td>10-30</td>
</tr>
<tr>
<td>Dilated cardiomyopathy</td>
<td>0-30</td>
</tr>
</tbody>
</table>
Hereditary Hemochromatosis

Symptoms and Physical Findings (%)

- No symptoms: 73%
- Lethargy, and/or weakness: 25%
- Loss of libido, impotence: 12%
- Arthralgias: 13%
- Diabetes: 5%
- Skin pigmentation: 5%

Am J Gastroenterol 92:784-789, 1997

Principal Clinical Features in Hereditary Hemochromatosis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of subjects</td>
<td>34†</td>
<td>35*</td>
<td>163*</td>
<td>37‡</td>
<td>40</td>
</tr>
<tr>
<td>Symptoms (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weakness, lethargy</td>
<td>73</td>
<td>20</td>
<td>83</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Abdominal pain</td>
<td>50</td>
<td>23</td>
<td>58</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Arthralgias</td>
<td>47</td>
<td>57</td>
<td>43</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>Loss of libido, impotence</td>
<td>56</td>
<td>29</td>
<td>38</td>
<td>32</td>
<td>12</td>
</tr>
<tr>
<td>Cardiac failure symptoms</td>
<td>35</td>
<td>0</td>
<td>15</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Physical and Diagnostic Findings (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cirrhosis (biopsy)</td>
<td>94</td>
<td>57</td>
<td>69</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Hepatomegaly</td>
<td>76</td>
<td>54</td>
<td>83</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>Splenomegaly</td>
<td>38</td>
<td>40</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Loss of body hair</td>
<td>32</td>
<td>6</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gynecomastia</td>
<td>12</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Testicular atrophy</td>
<td>50</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Skin pigmentation</td>
<td>82</td>
<td>43</td>
<td>75</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Clinical diabetes</td>
<td>53</td>
<td>6</td>
<td>55</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>

* Patient selection occurred by both clinical features and family screening.
† Only symptomatic index cases were studied.
‡ Discovered by family studies.

The natural history and disease burden of HH

Mutant HFE → Raised SF ± TS → Increased liver iron → Hepatic fibrosis → Iron overload related disease

1 in 200 N.Europeans C282Y +/+ Biochemical Expression 75%

50% 25% 5.6% 1.9% (Cirrhosis)

(Allen et al., Powell et al.)

Survival and causes of death in a cohort of 1086 treated C282Y HFE homozygous patients
Bardou-Jacquet, et al. Rennes - #191

- Variable results on impact of HFE hemochromatosis on survival
- Large cohort of well-defined prospectively documented C282Y homozygotes
- 1,872 C282Y homozygotes prospectively recorded from 1989 to 2009
- Those from 1996 (1,086) selected for this study
- Phlebotomy recommended if ferritin > 300 for men, > 200 for women
Survival and causes of death in a cohort of 1086 treated C282Y HFE homozygous patients
Bardou-Jacquet, et al. Rennes - #191 (continued)

• Mean follow-up 8.7 years
• Overall mortality 0.94 similar to that of the general population
• Ferritin > 2,000 associated with higher mortality while ferritin < 1,000 associated with lower mortality than general population
• Deaths related to liver disease – 51%, mainly from HCC – 76%

Survival and causes of death in a cohort of 1086 treated C282Y HFE homozygous patients
Bardou-Jacquet, et al. Rennes - #191 (continued)

• No increase in cardiac mortality or extra hepatic cancer mortality
• Serum ferritin < 1,000 associated with lower CV and extra-hepatic mortality
• Fibrosis score was highest predictor of death
Survival and causes of death in a cohort of 1086 treated C282Y HFE homozygous patients
Bardou-Jacquet, et al. Rennes - #191 (continued)

- Conclusions:
 - HFE mortality similar to general population
 - However, patients with severe iron overload have increased mortality mainly due to HCC
 - Sustained phlebotomy is beneficial to HH patients

Liver transplantation normalizes serum hepcidin level and cures iron metabolism alteration in HFE Cys282Tyr hemochromatosis.
Bardou-Jacquet, et al. Rennes - #189

- Hepcidin – iron hormone produced in liver effecting iron transport in enterocytes and macrophages
- HH – hepcidin deficiency
- All C282Y homozygous patients who had a LT for complications of HH between 1999-2008
- Iron parameters, hepcidin levels, HIC by MRI performed at end of follow-up
Liver transplantation normalizes serum hepcidin level and cures iron metabolism alteration in HFE Cys282Tyr hemochromatosis.
Bardou-Jacquet, et al. Rennes - #189 (continued)

• Results
 – 18 patients, 56 y.o.
 – Median follow-up 57 months
 – 16 patients for HCC, 1 for liver failure, 1 for biliary hamartomas
 – 16 Child-Pugh – A
 – 1 year survival – 83.3%

• Before LT
 – 7 with ferritin <50
 – Hepcidin – low in 9 of 11 patients and lower limit of normal in 2 of 11

• After LT
 – 11 had iron parameters performed
 – None had phlebotomy
 – Mean ferritin – 185
 – MRI – 9 had no iron overload
 – – 1 had mild iron overload
 – – 1 had high iron overload
 – Hepcidin levels normal in 10, low in 1
Liver transplantation normalizes serum hepcidin level and cures iron metabolism alteration in HFE Cys282Tyr hemochromatosis.

Bardou-Jacquet, et al. Rennes - #189 (continued)

- Liver transplantation normalizes hepcidin in long term
- LT cures phenotypic expression of HFE hemochromatosis

Prevalence of C282Y Homozygotes Without Iron Overload in Screening Studies

<table>
<thead>
<tr>
<th>Population sample</th>
<th>Country</th>
<th>n</th>
<th>Prevalence of homozygotes</th>
<th>C282Y homozygotes with a normal ferritin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electoral roll</td>
<td>New Zealand</td>
<td>1,064</td>
<td>1 in 213</td>
<td>40</td>
</tr>
<tr>
<td>Primary care</td>
<td>USA</td>
<td>1,653</td>
<td>1 in 276</td>
<td>50</td>
</tr>
<tr>
<td>Epidemiological survey</td>
<td>Australia</td>
<td>3,011</td>
<td>1 in 188</td>
<td>25</td>
</tr>
<tr>
<td>Blood donors</td>
<td>Canada</td>
<td>4,211</td>
<td>1 in 327</td>
<td>81</td>
</tr>
<tr>
<td>General public</td>
<td>USA</td>
<td>41,038</td>
<td>1 in 270</td>
<td>33</td>
</tr>
<tr>
<td>Primary care</td>
<td>North America</td>
<td>44,082</td>
<td>1 in 227</td>
<td>25</td>
</tr>
<tr>
<td>General public</td>
<td>Australia</td>
<td>29,676</td>
<td>1 in 146</td>
<td>32</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>124,636</td>
<td>1 in 240</td>
<td>41</td>
</tr>
</tbody>
</table>
Hereditary Hemochromatosis

Summary
- In 2012...
 - Most patients with hemochromatosis do not need a liver biopsy
 - Only about 60% of C282Y homozygous patients have phenotypic expression
 - About 25% of C282Y homozygous men have signs or symptoms of hemochromatosis

Inherited Liver Diseases – WD

Wilson Disease - Pathophysiology
- Gene *ATP7B* is a p-type ATPase on chromosome 13
- Impaired hepatic copper excretion
- Hepatic and extrahepatic copper deposition
Inherited Liver Diseases – WD

Wilson Disease - Genetics
• 1 in 30,000
 – Over 200 mutations in ATP7B
• His1069Glu most common
• Mutation analysis helpful in siblings

Wilson Disease - Clinical Features
• Liver disease
 – Fulminant hepatic failure
 – Chronic hepatitis
 – Cirrhosis
• Neurologic presentation
Wilson Disease – Diagnosis

- Clinical suspicion
 - Young (children, adolescents, and young adults)
 - Neurologic disease
 - Liver disease
 - Kayser-Fleischer rings
 - Low uric acid, alkaline phosphatase
 - Hemolytic anemia (Coombs negative)

Inherited Liver Diseases – WD

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Wilson Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum ceruloplasmin</td>
<td>20-40</td>
<td><20</td>
</tr>
<tr>
<td>24 hour urine copper</td>
<td><40</td>
<td>>100</td>
</tr>
<tr>
<td>Hepatic copper</td>
<td>15-50</td>
<td>250-3000</td>
</tr>
</tbody>
</table>
The Clinical, Laboratory Characteristics, Natural History and Outcome in 201 patients with Wilson Disease
Devarbhavi, et al. Bangalore, India and Doha, Qatar - #1342

• Purpose to describe and highlight WD features from single center in India to compare with patients from the West
• 201 consecutive patients from 1996-2011
• Scoring system: International group from Leilpzig

Results:

– 130 presented with liver disease
– 71 with neurological disease with or without liver disease. 27 with encephalopathy
– Consanguinity was present in 58%
– Ascites in 101
– Jaundice in 96
– Kayser Fleischer rings in 169
– Hepatomegaly in 84
Splenomegaly in 114
49 patients (24.4%) died during follow-up
2 died from HCC
13 of 15 symptomatic siblings with liver disease had same phenotype

Conclusions
- This cohort from India
 - Younger
 - Predominantly males
 - Kayser Fleischer rings > 80%
 - Consanguinity in 58%
 - HCC in 1%
Long-term outcome of a large patient cohort with Wilson disease in Austria
Beinhardt, et al., Austria - #1344

- 223 patients (2.77/100,000 inhabitants) diagnosed 1961-2011
- 165 patients were alive or their treating physician contacted to access current status as of 2011. No data available for 56 patients
- Median observation period – 14.4 years. 3,028 patient years

Long-term outcome of a large patient cohort with Wilson disease in Austria
Beinhardt, et al., Austria - #1344 (continued)

- Results:
 - 222 patients, (115 female, 107 male)
 - 133 presented with liver disease
 - 57 presented with neurologic disease
 - 22 asymptomatic
 - 22.3 years (range 2-61 years): age of symptomatic presentation
Long-term outcome of a large patient cohort with Wilson disease in Austria
Beinhardt, et al., Austria - #1344 (continued)

- 16 patients (7.2%) died during observation period
 - 12 related to WD
 - 7 hepatic decompensation
 - 3 after liver transplant
 - 1 accident
 - 1 suicide
- 28 patients (12.6%) required OLT
 - 8 fulminant, 19 ESLD, 1 worsening neurologic
 - OLT generally a few months after diagnosis
 - Survival 92% after 20 years

Conclusions:
- WD can be associated with serious, often fatal liver disease
- 12.6% require OLT
- Long-term prognosis is excellent if survive 10 years after initiation of treatment
- Early diagnosis and treatment mandatory for successful outcome
Inherited Liver Diseases – WD

Wilson Disease – Treatment
• d-penicillamine
• Trientine
• Zinc acetate
• Ammonium tetrathiomolybdate
• Liver transplantation

Wilson Disease – Family Screening
• Siblings
 – Ceruloplasmin
 – Role of genetic testing