Management of Difficult Common Bile Duct Stones

David G. Forcione, MD
Associate Director
Interventional Endoscopy Services
Massachusetts General Hospital
Assistant Professor of Medicine
Harvard Medical School

Objectives

• What makes a difficult biliary stone, “difficult”?

• What are the options for removal?

• Tips and tricks for management

• Take Home Points
What are the characteristics of a difficult biliary stone?

Scope of the problem

- 85-90% time: conventional methods and tools are effective for single session duct clearance
 - Endoscopic sphincterotomy (ES)
 - Balloon +/- basket extraction
Factors associated with “difficult” biliary stone

- 10-15% of all biliary stones
- Difficult:
 - Prolonged procedure time
 - >1 procedure for stone clearance
 - Need for unconventional tools
 - Need for surgery

Challenge #1: Access

Ampullary issue
- Periampullary diverticulum
- Duodenal obstruction

Altered anatomy
Challenge #1: Access

• Review OR records
• Choose the best scope for the job
 – Shorter the better
 – Duodenoscope: best option
 – Device assisted enteroscopy
• Have a back up plan
 – Referral to a more experienced interventional endoscopist
 – Percutaneous options?
 – Surgical referral

Percutaneous Cholangioscopy/Stone Therapy
Challenge #2: Stone factors

- **Number**
 - >3, impacted

- **Shape**
 - Non-round/oval

- **Size**
 - >15 mm
 (depends on size of distal duct)

- **Location**
 - Intrahepatic stones
 - PSC
 - Recurrent Pyogenic Cholangiopathy
 - Mirrizzi’s syndrome
Challenge #3: Duct factors

Strictures
- Distal CBD arm < 36 mm
- Distal CBD angle < 135°

Kim HJ, et al. GIE 2007;1154-1160
Challenge #4: Patient factors

- Coagulopathy

- Acuity of presentation
 - Shock/sepsis

Managing difficult biliary stones

- Pre-procedure
 - Know the patient’s anatomy (as best you can)
 - Review cross sectional imaging
 - Optimize coagulopathy
 - Pre-procedural antibiotics
 - Have tools available
 - Have a back-up plan
Menu of endoscopic options

- **Expand** the duct space
 - Endoscopic papillary balloon dilation

- **Reduce** the stone size
 - Mechanical lithotripsy
 - Electrohydraulic lithotripsy
 - Laser lithotripsy
 - Extracorporeal shock wave lithotripsy

- **Stenting** and *pharmacologic* therapy

- **Combination** of above

“Expand”: Endoscopic papillary balloon dilation (EPBD)

- Introduced in 1983 as an alternative to ES\(^1\)

- US Multicenter RCT (vs ES): increased pancreatitis (15.4% vs 0.8%, \(P < .001\)) (including 2 deaths) led to its decline in the US\(^2\)

- Last 7 years: resurgence as an adjunct to ES for managing large stones (“endoscopic papillary large balloon dilation”)

“Expand”: Endoscopic papillary large balloon dilation (EPLBD)

• Combines advantages of EPBD and ES
 – Less bleeding and perforation associated with smaller ES
 – Less pancreatitis: small ES separates PD and CBD orifices

• First published 2003
 – 58 pts with difficult stones
 – 93% success without mechanical litho
 – 15% risk of complications

• Wire-guided balloons
• How big?
 – 10-20 mm
 – Limit to distal duct size
• How long?
 – <1 min for pts with ES (no diff 20 vs 60 secs)
 – >1 min longer for pts without ES (5 min >1 min)

Efficacy of EPLBD

- RCT of 156 pts ES vs ES+EPLD
 - Similar stone clearance (89%)
 - Similar complication rates (7% vs 10%)
 - Reduced need for mech lithotripsy (29% vs 46%)
 - Shorter procedure times/fluoro
 - Lower costs ($5025 vs $6005)

- Meta-analyses
 - 6 RCT/835 pts
 - ES+EPLBD: reduced complications (OR 0.53), less mech litho (OR 0.26, OR 0.15 for stones>15 mm)

Complications

- Up to 17%
- Bleeding: slow inflation/deflation may reduce
- Pancreatitis: ES first reduces risk. Primary EPBD should be used in selected cases (coagulopathy, post-op anatomy)
- Multicenter analysis
 - Perforation: most serious AE (0.4%, 7/1761)
 - Main RF: Distal CBD stricture (contraindication)

Prototype ES+ EPLBD catheter

Mechanical Lithotripsy

- Introduced 1982¹
- “Conventional” tools
- Most widely used technique for large biliary tract stones
- Engagement of stone and “crushing”

Mechanical Lithotripsy: Tools

- Crank/“Salvage” Lithotripsy
 - Lithotripsy compatible baskets
 - Basket impaction (with compatible baskets)

Mechanical Lithotripsy

- “Through the scope” approach
Mechanical Lithotripsy: Efficacy

- 162 pts with CBD stones for ML
- Cumulative probability of duct clearance

<table>
<thead>
<tr>
<th>Size</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td><10mm</td>
<td>>90%</td>
</tr>
<tr>
<td>>28mm</td>
<td>68%</td>
</tr>
</tbody>
</table>

- Other factors:
 - Duct size
 - Degree of impaction
 - Stone hardness

Garg PK, et al. GIE 2004; 601-605

Electrohydraulic Lithotripsy (EHL)

- Technology developed for industrial mining
- Introduced to ERCP in 1977
- Bipolar probe discharges sparks in liquid medium
- Pulse is transmitted as a hydraulic pressure wave onto stones
- Once fragmentation achieved, baskets and balloons used to extract

Electrohydraulic Lithotripsy (EHL)

- Non-contact
- Optimally performed with cholangioscopy guidance
 - Mother-daughter
 - Direct per oral or percutaneous applications
 - Post-operative anatomy
- Periprocedural abx

Electrohydraulic Lithotripsy (EHL)

- 94 pts with difficult biliary stones
 - Indications: large (>15mm) stones (n=81) or stenosis below a stone (n=13 patients)
 - Mother-daughter cholangioscopy
 - 76% (one session), 14% (2 sessions), and 10% (>3 sessions)
 - Post EHL: balloon or basket extraction of fragments.
 - Complications:
 - cholangitis and/or jaundice (n=13)
 - mild hemobilia (n=1)
 - mild post-ERCP pancreatitis (n=1)
 - biliary leak (n=1)
 - bradycardia (n=1)

Laser Lithotripsy (LL)

- Wavelength of light is focused on stone to induce wave mediated fragmentation through an aqueous medium (photothermal vaporization)
- Non-contact
- Pulsed (as opposed to continuous for tumor ablation)
- First used (Nd-YAG) in ERCP in 1986

Laser Lithotripsy (LL)

- Holmium YAG:
 - First used in 1998
- Most commonly used device
Laser Lithotripsy (LL)

• Prospective study in India
• 60 pts with difficult bile duct stones
• Spyglass cholangioscopy
• 365 um diameter fiber, with energy levels set at 800 to 1500 mJ at a frequency of 8 to 15 Hz.
• 83%: complete clearance after a single session; 17% required an additional session.
• Mean procedure times: 45.9 m (30-90 m)
• Complications: 13.5% of patients
 – Fever (n = 3)
 – Transient abdominal pain (n = 4)
 – Biliary stricture (n = 1).

Laser Lithotripsy vs EHL

• Comparative studies underway

<table>
<thead>
<tr>
<th></th>
<th>EHL</th>
<th>LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technique</td>
<td>Cholangioscopic</td>
<td>Cholangioscopic</td>
</tr>
<tr>
<td>Contact</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Irrigation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficacy</td>
<td>>90%</td>
<td>>90%</td>
</tr>
<tr>
<td>Sessions</td>
<td><3</td>
<td><3</td>
</tr>
<tr>
<td>Cost</td>
<td>$</td>
<td>$$$</td>
</tr>
<tr>
<td>Training</td>
<td>X</td>
<td>XX</td>
</tr>
<tr>
<td>Complications</td>
<td>Cholangitis</td>
<td>Cholangitis</td>
</tr>
<tr>
<td></td>
<td>Duct injury</td>
<td></td>
</tr>
</tbody>
</table>
Extracorporeal Shock Wave Therapy (ESWL)

- High pressure, focussed EHL shock waves transmitted to the stone
- Fluoro guidance
- US: Urologists
- Outside US: GI

ESWL Protocol

- Large CBD stone
 - Initial ERCP and NBT (for stone localization and to bathe the stone in saline)
 - ESWL till stones fragment to < 5 mm diameter
 - ERCP and CDD clearance with basket or balloon
 - Stenting only if indicated

Intensity of 4 (scale 1-6)
11 000-16 000 kV
Frequency: 90 shocks/min
Max of 5000 shocks/session

ESWL- Data

1031 cases (2004-2015)

55% Males, 45% Females

Age
- < 20 yrs: 2.0%
- 21-40 yrs: 16.3%
- 41-60 yrs: 47.5%
- > 61 yrs: 38.7%

Number of sessions
- ≤2: 23.9%
- 3-4: 47.9%
- >5: 28.5%

Tandan, M Asian Institute of Gastroenterology Data (DDW 2015)
ESWL - Complications

• Generally well tolerated
 – Transient hemobilia
 – Cholangitis
 – Pancreatitis
 – SQ Echymoses
• Stone recurrence rates 14% at 2 yrs¹

Stent therapy

• Used in patients with serious comorbidities, active coagulopathy, or with high acuity (sepsis)
• Effects
 – Drainage: reduced cholestasis/cholangitis
 – Mechanical action on stones to reduce size
 – Facilitates additional maneuvers
• Equivocal benefit of choleretic agents (ursodiol, terpene)¹²

Stent therapy

- 40 pts with large or multiple stones
- 2 mos of stenting with 7 Fr double pigtail stent

Horiuchi A et al. GIE 2010; 1200-1203
Surgery has a role

Some cases need multimodal treatment
Take Home Points

• Difficult biliary stones require an individualized approach:
 – Anatomy
 – Acuity
 – Comorbidities
 – Stone burden
 – Available tools and expertise

• Become comfortable with ES+PBL – WORKS!
• Adjunctive tools (LL/EHL) for patients with strictures or impacted stones
• ESWL in rare instances; Partner with a Urologist
• Stents for septic patients, refractory cases
• Do not forget about surgical options in truly refractory cases (who are candidates)
Thank you