Treatment of Hepatitis C and Renal Disease

David E. Bernstein, MD, FACG
Vice Chair of Medicine for Clinical Trials
Chief, Division of Hepatology and Director, Sandra Atlas Bass Center for Liver Diseases
Northwell Health
Professor of Medicine
Hofstra Northwell School of Medicine
HCV and Renal Disease

- HCV infection may lead to renal disease or be associated with renal disease
 - Mixed cryoglobulinemia (type II cryoglobulins, or + RF)\(^1\)
 - Membranoproliferative glomerulonephritis (MPGN)\(^1\)
 - Polyarteritis nodosa\(^2\)
- Less clearly related to HCV\(^1\)
 - Focal segmental glomerulosclerosis
 - Proliferative glomerulonephritis
 - Membranous glomerulonephritis
 - Fibrillary and immunotactoid glomerulopathies
- Diabetes (direct link to HCV) and hypertension common in HCV infection\(^3\)

Hepatitis C as a Cause of Renal Disease

- HCV infection in patients with advanced liver failure increases risk for renal disease
- Chronic HCV infection associated with increased risk for renal cell carcinoma
- Chronic HCV infection accelerated renal disease in HIV-infected patients

Stages of Chronic Kidney Disease

<table>
<thead>
<tr>
<th>CKD Stage</th>
<th>Description</th>
<th>GFR (mL/min/1.73 m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kidney Damage with Normal or ↑ GFR</td>
<td>≥90</td>
</tr>
<tr>
<td>2</td>
<td>Kidney Damage with Mild ↓ GFR</td>
<td>60-89</td>
</tr>
<tr>
<td>3</td>
<td>Moderate ↓ GFR</td>
<td>30-59</td>
</tr>
<tr>
<td>4</td>
<td>Severe ↓ GFR</td>
<td>15-29</td>
</tr>
<tr>
<td>5</td>
<td>Kidney Failure</td>
<td><15 (or dialysis)</td>
</tr>
</tbody>
</table>

Dose Adjustments for Renal Impairment

- No reduction required for any of the following medications with GFR >30
 - Sofosbuvir, Velpatasvir, Ledipasvir, Daclatasvir, Ombitasvir, Dasabuvir, Paritaprevir, Simeprevir, Elbasvir, Grazeprevir
- For GFR <50, dose reduction is required for:
 - PEG-IFN
 - Ribavirin

Dose Adjustments for Renal Impairment

- For GFR <30 and >15, and for patients on hemodialysis
 - Dose reduction of RBV to 200 mg/day
 - No dose reduction for grazeprevir/elbasvir
 - Limited data for Paritaprevir, ombitasvir, dasabuvir, daclatasvir
 - Minimal data for ledipasvir, simeprevir, velapatasvir

Current Treatment of Hepatitis C in Patients whose CrCl >30

- No dose adjustment with:
 - Daclatasvir
 - FDC Ledipasvir/sofosbuvir
 - FDC Sofosbuvir/velpatasvir
 - FDC Paritaprevir/ritonavir/ombitasvir + dasabuvir
 - Simeprevir/sofosbuvir
 - Grazeprevir/elbasvir
Current Treatment of Hepatitis C in Patients whose CrCl <30

- Elbasvir/grazeprevir
 - GT 1a 12 weeks with RBV
 - GT 1a with RAV 16 weeks with RBV
 - GT 1b 12 weeks without RBV
- FDC Paritaprevir/ritonavir/ombitasvir + dasabuvir
 - GT 1a 12 weeks with RBV
 - GT 1b 12 weeks without RBV

WHY NOT SOFOSBUVIR BASED REGIMENS FOR RENAL DISEASE?
Metabolism of Sofosbuvir

Sofosbuvir Pharmacokinetics
HCV-Negative Patients with Renal Impairment

<table>
<thead>
<tr>
<th>Patient Renal Impairment</th>
<th>Sofosbuvir AUC*</th>
<th>GS-331007 AUC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following Single 400 mg dose of sofosbuvir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eGFR ≥50 and < 80 mL/min/1.73 m²</td>
<td>61%</td>
<td>55%</td>
</tr>
<tr>
<td>eGFR ≥30 and < 50 mL/min/1.73 m²</td>
<td>107%</td>
<td>88%</td>
</tr>
<tr>
<td>eGFR <30 mL/min/1.73 m²</td>
<td>171%</td>
<td>451%</td>
</tr>
<tr>
<td>ESRD requiring hemodialysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dosed 1 hour before hemodialysis</td>
<td>28%</td>
<td>1280%</td>
</tr>
<tr>
<td>Dosed 1 hour after hemodialysis</td>
<td>60%</td>
<td>2070%</td>
</tr>
</tbody>
</table>

*AUC given relative to subjects with normal renal function

Sofosbuvir Prescribing Information, Gilead Sciences May 2015
Sofosbuvir

• No dose recommendation can be given for patients with severe renal impairment (estimated Glomerular Filtration Rate (eGFR) <30 mL/min/1.73m²) or with end stage renal disease (ESRD) due to higher exposures (up to 20-fold) of the predominant sofosbuvir metabolite

• Similar rapid virologic decline observed to those with normal renal function
• SVR12: 40%

• SOF 200 mg + RBV was safe and relatively well tolerated in pts with severe renal impairment with exacerbation of anemia via RBV-induced hemolysis as primary AE

• Mean eGFR change from baseline to EOT (Wk 24): -3.12 mL/min
• No treatment-emergent clinically significant ECG results

SOF + RBV in Pts With Severe Renal Impairment

• Similar rapid virologic decline observed to those with normal renal function
• SVR12: 40%

• Comparing SOF and GS-331007 exposures compared with historical HCV-infected population
• SOF 200 mg + RBV was safe and relatively well tolerated in pts with severe renal impairment with exacerbation of anemia via RBV-induced hemolysis as primary AE

HCV AND HEMODIALYSIS

Epidemiology of HCV in Patients on Hemodialysis

- In U.S., estimated HCV prevalence of 8%
 - (approximately 400,000 persons on HD)
- HCV prevalence 5X greater in HD patients than in general U.S. population
- Risk factors for HCV infection among hemodialysis patients:
 - Number of years on dialysis
 - Number of blood product transfusions
 - Injection drug use
 - History of organ transplantation

Impact of Hepatitis C Infection on Hemodialysis Patients

• Increased overall risk of mortality

• Increased risk of cirrhosis

• Increased incidence of hepatocellular cancer

DATA ON HCV AND RENAL DISEASE:
THE PAST
Interferon Monotherapy for HD Patients with Chronic HCV Analysis of the Literature on Efficacy (SVR)

Analysis of 8 Studies Using INF-alfa 2b Monotherapy 3 million units 3x/week

Peginterferon + Ribavirin for HCV in Hemodialysis Patients Meta-Analysis of the Literature on Efficacy

Analysis of 11 Studies (287 patients) Using PEG alfa-2a/PEG alfa-2b + RBV

HELPER-1 Trial: Study Regimens

Virologic Responses

<table>
<thead>
<tr>
<th>Week</th>
<th>Peginterferon alfa-2a + Ribavirin</th>
<th>Peginterferon alfa-2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N = 103</td>
<td>N = 102</td>
</tr>
<tr>
<td>48</td>
<td>SVR24 N = 94</td>
<td>SVR24 N = 91</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Drug Dosing

- Peginterferon alfa-2a: 135 µg 1x/week
- Low-dose Ribavirin: 200 mg once daily

HELPER-1 Trial: Results

Virologic Responses

<table>
<thead>
<tr>
<th>Virologic Response (%)</th>
<th>Peginterferon + Ribavirin</th>
<th>Peginterferon</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVR</td>
<td>51/103</td>
<td>36/102</td>
</tr>
<tr>
<td>ETVR</td>
<td>87/101</td>
<td>84/102</td>
</tr>
<tr>
<td>SVR24</td>
<td>64/103</td>
<td>33/102</td>
</tr>
</tbody>
</table>

Drug Dosing

- Peginterferon alfa-2a: 135 µg once weekly
- Ribavirin: 200 mg daily

CURRENT DATA ON HCV AND RENAL DISEASE

Sofosbuvir-Containing Regimens including Patients with Renal Disease
HCV-TARGET Trial: Result

HCV-TARGET Trial: SVR12 Results by Baseline eGFR and Regimen

<table>
<thead>
<tr>
<th>Estimated GFR mL/min/1.73 m²</th>
<th>Patients with SVR 12 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤30</td>
<td>100 100 100 100 93 81 80 80 91 79</td>
</tr>
<tr>
<td>30-45</td>
<td>1/1 2/2 1/3 2/2 9/9 20/25 13/14 8/15 22/29 38/45</td>
</tr>
<tr>
<td>46-60</td>
<td>1/6 3/17 2/20 3/21 3/29 2/12 2/13 2/32</td>
</tr>
<tr>
<td>>60</td>
<td>88/88 87/71 71/71 80/60 52/52 111/37</td>
</tr>
</tbody>
</table>

Abbreviations: SOF = sofosbuvir; PEG = peginterferon; RBV = ribavirin; SMV = simeprevir

Saxena V, et al. 50th EASL, 2015; Abstract LP08.
HCV TARGET: Safety Outcomes With SOF Regimens by Baseline eGFR

<table>
<thead>
<tr>
<th>Safety Outcome in Pts Who Completed SOF-Containing Therapy, n (%)</th>
<th>eGFR ≤ 30 (n = 17)</th>
<th>eGFR 31-45 (n = 56)</th>
<th>eGFR 46-60 (n = 157)</th>
<th>eGFR > 60 (n = 1559)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anemia AEs</td>
<td>6 (35)</td>
<td>16 (29)</td>
<td>37 (24)</td>
<td>246 (16)</td>
</tr>
<tr>
<td>Transfusions</td>
<td>2 (12)</td>
<td>5 (9)</td>
<td>3 (2)</td>
<td>31 (2)</td>
</tr>
<tr>
<td>Erythropoietin</td>
<td>1 (6)</td>
<td>8 (14)</td>
<td>14 (9)</td>
<td>50 (3)</td>
</tr>
<tr>
<td>Reduction in RBV dose</td>
<td>3 (18)</td>
<td>8 (30)</td>
<td>33 (42)</td>
<td>185 (19)</td>
</tr>
<tr>
<td>RBV discontinuation</td>
<td>0</td>
<td>4 (15)</td>
<td>1 (1)</td>
<td>12 (1)</td>
</tr>
<tr>
<td>Worsening renal function</td>
<td>5 (29)</td>
<td>6 (11)</td>
<td>4 (3)</td>
<td>14 (1)</td>
</tr>
<tr>
<td>Renal or urinary system AEs</td>
<td>5 (29)</td>
<td>6 (11)</td>
<td>13 (8)</td>
<td>84 (5)</td>
</tr>
<tr>
<td>Serious AEs</td>
<td>3 (18)</td>
<td>13 (23)</td>
<td>8 (5)</td>
<td>100 (6)</td>
</tr>
<tr>
<td>Cardiac AEs</td>
<td>1 (6)</td>
<td>2 (4)</td>
<td>8 (5)</td>
<td>53 (3)</td>
</tr>
</tbody>
</table>

CLINICAL STUDIES IN ADVANCED RENAL DISEASE
C-SURFER: Grazoprevir/Elbasvir in Pts With GT1 HCV and Stage 4 or 5 CKD

- NO RBV IN THIS STUDY*

<table>
<thead>
<tr>
<th>GT1 HCV-infected pts with stage 4/5 CKD (n = 224)</th>
<th>Treatment Wk 12</th>
<th>Follow-up Wk 4</th>
<th>Follow-up Wk 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grazoprevir/Elbasvir (n = 111)</td>
<td>Randomized period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo (n = 113)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grazoprevir/Elbasvir (n = 113)</td>
<td>Open-label period</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grazoprevir/elbasvir dosed orally 100 mg/50 mg once daily.

C-SURFER: KEY INCLUSION/EXCLUSION CRITERIA

- HCV GT1 infection
- Treatment-naive and treatment-experienced patients
- CKD stage 4/5 (± hemodialysis dependence)
- Compensated cirrhosis allowed
- HBV and HIV negative
C-SURFER: DEMOGRAPHICS

<table>
<thead>
<tr>
<th></th>
<th>GZR + EBR (ITG + PK group)</th>
<th>Placebo (DTG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 weeks (n = 122)</td>
<td>12 weeks (n = 113)</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>92 (75)</td>
<td>80 (71)</td>
</tr>
<tr>
<td>Female</td>
<td>30 (25)</td>
<td>33 (29)</td>
</tr>
<tr>
<td>Race, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>61 (50)</td>
<td>48 (43)</td>
</tr>
<tr>
<td>African-American</td>
<td>55 (45)</td>
<td>53 (47)</td>
</tr>
<tr>
<td>Asian</td>
<td>5 (4)</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (<1)</td>
<td>3 (3)</td>
</tr>
<tr>
<td>HCV genotype, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G1a</td>
<td>63 (52)</td>
<td>59 (52)</td>
</tr>
<tr>
<td>G1b</td>
<td>58 (48)</td>
<td>53 (47)</td>
</tr>
<tr>
<td>G1 other</td>
<td>1 (<1)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Prior treatment history, n (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naive</td>
<td>101 (83)</td>
<td>88 (78)</td>
</tr>
<tr>
<td>Experienced</td>
<td>21 (17)</td>
<td>25 (22)</td>
</tr>
<tr>
<td>Cirrhosis, n (%)</td>
<td>7 (6)</td>
<td>7 (6)</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>44 (36)</td>
<td>36 (32)</td>
</tr>
<tr>
<td>Dialysis, n (%)</td>
<td>92 (75)</td>
<td>87 (77)</td>
</tr>
<tr>
<td>CKD stage, n(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stage 4</td>
<td>22 (18)</td>
<td>22 (19)</td>
</tr>
<tr>
<td>stage 5</td>
<td>100 (82)</td>
<td>91 (81)</td>
</tr>
</tbody>
</table>

DTG = deferred treatment group; ITG = immediate treatment group; PK = Intensive PK group

C-SURFER: SVR12: IMMEDIATE TREATMENT GROUP (ITG)

Modified Full Analysis Set

- Relapse: 1*
- Discontinued unrelated to Tx: 0

Full Analysis Set

- Relapse: 1
- Discontinued unrelated to Tx: 6†

MFAS = primary efficacy analysis; FAS was a secondary analysis
*Noncirrhotic, interferon-intolerant patient with HCV GT1b infection relapsed at FW12
†Lost to follow-up (n=2), n=1 each for death, non-compliance, withdrawal by subject, and withdrawal by physician (due to violent behavior)
C-surfer virologic response (ITG)

<table>
<thead>
<tr>
<th></th>
<th>TW2 (%)</th>
<th>TW4 (%)</th>
<th>TW12 (EOT) (%)</th>
<th>FUW4 (%)</th>
<th>FUW12 (SVR12) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>66%</td>
<td>90%</td>
<td>100%</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td></td>
<td>81/122</td>
<td>109/121</td>
<td>119/119</td>
<td>118/118</td>
<td>115/116</td>
</tr>
</tbody>
</table>

1 non-cirrhotic patient with HCV GT1b infection relapsed at FUW12

*Efficacy is presented for the modified full analysis set population (mFAS)
Roth et al. Lancet 2015

C-SURFER: Efficacy and Safety Results

<table>
<thead>
<tr>
<th>AE, %</th>
<th>Grazoprevir/Elbasvir (Randomized Tx) (n = 111)</th>
<th>Placebo (n = 113)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serious AEs</td>
<td>14.4</td>
<td>16.8</td>
</tr>
<tr>
<td>D/c due to AE</td>
<td>0</td>
<td>4.4</td>
</tr>
<tr>
<td>Death</td>
<td>0.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Hb decr from BL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1 grade</td>
<td>24.3</td>
<td>26.5</td>
</tr>
<tr>
<td>• 2 grades</td>
<td>12.6</td>
<td>7.1</td>
</tr>
<tr>
<td>• 3 grades</td>
<td>3.6</td>
<td>1.8</td>
</tr>
<tr>
<td>• 4 grades</td>
<td>0</td>
<td>0.9</td>
</tr>
</tbody>
</table>

GZR/EBV for 12 wks

ELBASVIR / GRAZEPREVIR GT 1 FDA APPROVAL

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT 1a TN or PEG/RBV TE without baseline RAV's</td>
<td>Elbasvir/grazeprevir 12 weeks</td>
</tr>
<tr>
<td>GT 1a TN or PEG/RBV TE with baseline RAV's</td>
<td>Elbasvir/grazeprevir + RBV 16 weeks</td>
</tr>
<tr>
<td>GT 1b TN or PEG/RBV TE</td>
<td>Elbasvir/grazeprevir 12 weeks</td>
</tr>
<tr>
<td>GT 1a/1b PEG/RBV/PI TE</td>
<td>Elbasvir/grazeprevir 12 weeks</td>
</tr>
</tbody>
</table>

Despite C-Surfer study without RBV, the FDA has approved treatment for renal disease with RBV although no CKD patients were treated with RBV

Zepatier PI Merck January 28, 2016

Ruby-1 Study

- **3D**: Co-formulated OBV/PTV/r (25/150/100 mg QD) and DSV (250 mg BID)
- **For GT1a**: RBV 200 mg QD
- **For GT1b**: No RBV

Ruby 1: Ombitasvir/Paritaprevir/r + Dasabuvir + RBV in G1 with stage 4/5 kidney disease

- 12 week treatment
- Non-cirrhotics
- 14 on dialysis
- 13 G1a, 7 G1b
- 1 subject relapsed
 - 49 yo AA, F3, IL28 B CT, BMI 37
 - < 92% medication adherence
- 1 subject died 14 days after treatment from heart disease

Pockros et al. Gastro 2016

Ombitasvir-Paritaprevir-Ritonavir and Dasabuvir in GT1 & Renal Disease

<table>
<thead>
<tr>
<th>Week</th>
<th>0</th>
<th>12</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT 1a
n = 13</td>
<td>Ombitasvir-Paritaprevir-Ritonavir and Dasabuvir + Ribavirin</td>
<td></td>
<td>SVR12</td>
</tr>
<tr>
<td>GT 1b
n = 7</td>
<td>Ombitasvir-Paritaprevir-Ritonavir and Dasabuvir</td>
<td></td>
<td>GVR12</td>
</tr>
</tbody>
</table>

Drug Dosing
- Ombitasvir-Paritaprevir-Ritonavir (25/150/100 mg once daily) + Dasabuvir: 250 mg twice daily
- Ribavirin for patients not on hemodialysis: 200 mg once daily

ACG 2016 Southern Hepatitis School
Copyright 2016 American College of Gastroenterology
Ruby 1 Results

Expedition-IV: Glecaprevir/Pibrentasvir in renal impairment in genotype 1-6

- 104 subjects with CKD
 - 82% on dialysis
 - 87% CKD stage 5
 - 13% CKD stage 4
- Genotype breakdown
 - 153%
 - 2 16%
 - 3 11%
 - 4 19%
 - 5 1%
 - 6 1%
- SVR 4 99% (103/104)
- 4 adverse events leading to discontinuation

Gane et al. AASLD 2016 Abstract LB-11
HCV TREATMENT AND KIDNEY TRANSPLANTATION

Rationale for HCV Treatment in Renal Transplant Candidate

- Eradicate HCV as immunologic stimulus to B-cells to decrease immune complex formation and impact vasculitis or glomerulonephritis
- Decrease extrahepatic HCV-related complications
- Prevent HCV-related post-transplant complications
 - Interaction with HCV immune complexes and calcineurin inhibitor related renal toxicity
- HCV-related liver disease may accelerate with post-transplant immunosuppression
- Post-transplant treatment extremely difficult due to risk of graft rejection from interferon (historical)
Treatment of HCV after Renal Transplantation

- Interferon-based therapy contraindicated because of risk of allograft rejection and loss
- Interferon-free regimens provide new options

To treat or not treat patients waiting for kidney transplantation

FOR
- Eradicate HCV
- Effective therapies

AGAINST
- Potentially prolong wait for kidney
 - HCV + kidneys
CONCLUSIONS

Recommended regimen for patients with CrCl below 30 ml/min but for whom the urgency to treat is high and renal transplant is not an immediate option

• Genotype 1a
 – Elbasvir/grazeprevir for 12 weeks without RAV
 – Elbasvir/grazeprevir for 16 weeks with RAV
 – Paritaprevir/ritonavir/ombitasvir with twice a day dasabuvir with RBV for 12 weeks

• Genotype 1b
 – Elbasvir/grazeprevir for 12 weeks
 – Paritaprevir/ritonavir/ombitasvir with dasabuvir

• Genotype 4
 – Elbasvir/grazeprevir for 12 weeks
Recommended regimen for patients with CrCl below 30 ml/min or ESRD for whom the urgency to treat is high and renal transplant is not an immediate option

- Genotype 2, 3, 5*, or 6*
 - PEG-IFN and dose adjusted RBV at 200 mg daily

- Several small studies show safety of SOF/LDV in HD