Functional Dyspepsia & Nausea: Where Do We Stand in 2015?

American College of Gastroenterology
Nashville, Tennessee December 2015

Brian E. Lacy, Ph.D., M.D., FACG
Professor of Medicine
Geisel School of Medicine at Dartmouth
Chief, Section of Gastroenterology & Hepatology
Director, GI Motility Laboratory
Dartmouth-Hitchcock Medical Center
Lebanon, NH

Functional Dyspepsia: Goals

• How do I make the diagnosis?
• Do I need to perform any tests?
• Will dietary interventions help?
• Which medications will help my patient?
• What alternative therapies help dyspeptic patients?
How Do I Make the Diagnosis?

• First - consider the diagnosis
 – Every upper GI symptom is not GERD
 – All abdominal pain is not IBS
• Weigh the prevalence against other disorders
 – Functional dyspepsia is common
 – MALS is not
• Review the symptoms
• Use Rome III definition and criteria

Symptoms of Functional Dyspepsia

• Epigastric pain/discomfort – 90%
• Post-prandial fullness – 75-79%
• Bloating – 68-96%
• Nausea - 50-85%
• Early satiation – 50-82%
• Belching – 45-85%
• Vomiting – 20-31%
• Weight loss – 58%

Lacy et al, Aliment Pharmacol Ther 2012.
FD Defined: Rome III Criteria

Presence of one or more of the following symptoms, thought to originate in the gastroduodenal region

- Postprandial distress syndrome (PDS): Meal-related FD
- Epigastric pain syndrome (EPS)

- Bothersome postprandial fullness after ordinary sized meals
- Early satiety that prevents finishing a regular sized meal
- Epigastric pain
- Epigastric burning

No evidence of structural disease to explain the symptoms and

Symptoms present for the past 3 months, with onset at least 6 months before diagnosis
Note that heartburn should be excluded.

Uninvestigated Dyspepsia

Age ≥ 55 or alarm features*

EGD

*Alarm features include unintentional weight loss, anemia, recurrent vomiting, odynophagia, or a family history of gastric cancer
Etiology of Investigated Dyspepsia: Organic vs. Functional

- Peptic ulcer disease: 5-15%
- GERD: 15-20%
- Malignancy: <1%
- Functional Dyspepsia: 70%
- Miscellaneous (biliary, pancreas, celiac, medications, vascular)

Treating FD is difficult

- No medication is uniformly effective
- No medication is FDA approved
- Multiple pathophysiologic processes
- Symptoms do not reflect pathophysiology
- Symptoms do not predict response to treatment
The pathophysiology of FD

- Psychological factors +/- central hypersensitivity
- Impaired fundic accommodation
- Dysfunction of visceral afferents
- Gastric myoelectrical dysrhythmias
- Delayed gastric emptying
- Antroduodenal dyscoordination
- Post-prandial antral hypomotility
- Hypersensitivity to gastric distension
- Rapid gastric emptying

FD & Diet

- No large R, DB, PC studies to guide therapy
- Fats generally worsen symptoms
 - Delay gastric emptying
 - Worsen reflux
- Smaller more frequent meals generally help
- Response is variable and may depend upon FD subtype

Diagram adapted from Quigley EMM. Aliment Pharmacol Ther. 2004;20(S7):56
FD Treatment: H2RAs & H. Pylori

- **H2RAs** – histamine type 2 receptor antagonists
 - Meta-analysis of 22 RCTs showed benefit
 - Significant methodologic flaws

- **H. pylori** treatment
 - Meta-analysis of 17 RCTs (n = 3566 patients)
 - Mean response rate – placebo (29%) vs. H. pylori cure (37%)
 - Relative risk of symptoms remaining = 0.91 (95% CI, 0.86-0.95)
 - NNT = 14 (95% CI, 10-28)

Meta-analysis of PPI trials for FD

- 7 RCTs (3725 patients)
- NNT = 14.6
- Sub-group analysis:
 - “ulcer-like” more likely to improve
 - “reflux-like” more likely to improve

Antidepressants & FD

- TCAs and SSRIs used, but little data until now
- Multicenter (8), R, DB, PC trial; 12 weeks
- Rome II criteria; depression = exclusionary
- 18-75 yrs; men and women; normal EGD
- TCA (amitriptyline – 50 mg) vs. SSRI (escitalopram – 10 mg) vs. placebo
- Multiple questionnaires, labs, nutrient drink test and gastric emptying scan
- Primary endpoint: adequate relief of FD symptoms for >5 of last 10 weeks

Talley et al, Gastroenterology, 2015; 149: 340-349

Functional Dyspepsia Treatment Trial

<table>
<thead>
<tr>
<th>Visit</th>
<th>Screening</th>
<th>Treatment</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Questionnaires</td>
<td>▲▲▲ ▲ ▲ ▲ ▲</td>
<td>▲ ▲ ▲ ▲ ▲</td>
<td>▲ ▲</td>
</tr>
<tr>
<td>Blood draw</td>
<td>▲ ▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Gastric emptying</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Nutrient drink test</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Gastric accommodation*</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

*Mayo Clinic sites only
Functional Dyspepsia Treatment Trial

- Mean age = 44 yrs; 75% women
- Primary endpoint of adequate relief of Sx:
 - 53% amitriptyline
 - 40% placebo
 - 38% escitalopram (p = .05)
- “ulcer-like” FD Pts 3x more likely to respond to TCA than placebo
- Pts with delayed gastric emptying were less likely to respond to either TCA or SSRI
- Neither agent affected gastric emptying
- Neither agent affected meal related satiety
Buspirone

- A non-sedative, non-benzodiazepine anxiolytic
- A 5HT_{1A}-agonist
- 30 and 40 mg significantly improved fundic relaxation compared to placebo in healthy volunteers (n = 10)^1
- R, DB, PC cross-over trial in FD patients^2
 - 17 patients (13 women; mean age = 38)
 - Barostat and breath test for gastric emptying
 - Sx and gastric accommodation improved
 - Gastric emptying of liquids was delayed

FD: Novel Treatment Options

- Duloxetine
- Acotiamide
- Tramadol
- Gabapentin
- Pregabalin
- Ghrelin agonists
- Capsaicin
- Iberogast
- Peppermint oil
- Caraway oil
- Artichoke leaf
- Hypnotherapy
- CBT
- Acupuncture
Summary: FD Patient Care

- Reassure, educate, correct misconceptions
- Treat the predominant symptom
- Give adequate trials (8-12 weeks)
- Consider combination therapy
- Treat co-existing anxiety
 - Anxiety may drive symptom expression
- “Alternative” therapies are now standard
- No opioids

Nausea Diagnosis & Treatment: Goals

- Review key definitions
- Understand the underlying pathophysiology
- Review treatment options
Definitions

- **Nausea** - Derived from the Greek “nautia”
 - a vague, unpleasant or uneasy feeling in the abdomen
 - often difficult to describe
 - accompanied by the sensation that vomiting might occur
 - typically preceded by anorexia

- **Objectively, nausea is associated with:**
 - a reduction in gastric tone and gastric peristalsis
 - an increase in small bowel tone
 - tachygastria
 - an increase in plasma cortisol and beta-endorphin
 - rise in plasma vasopressin (AVP)

- **Vomiting** - From the Latin “vomere” (to discharge)
 - The forceful expulsion of gastric contents through the mouth
 - Typically preceded by anorexia and nausea
 - Autonomic symptoms are usually present (hypersalivation, tachycardia, pallor, diaphoresis, lightheadedness)

- **Retching** – absence of expulsion of gastric contents

- **Regurgitation** – effortless movement of gastric contents into the mouth and throat
N & V: A Protective Mechanism

- Robert Boyle (Irish; 1627-1691): “Tis profitable for man that his stomach should nauseate or reject things that have a loathsome taste or smell”
- Food thought to be dangerous/disgusting
- Food previously associated with N & V (conditioned taste aversion)
- Ingestion of a toxin
- Underlying gastroduodenal pathology
- Psychological factors (stress, anxiety)

CNS: Convergence on the NTS

- Vestibular system
- Area postrema
 - Chemoreceptor trigger zone
- Abdominal/vagal afferents
- Other
 - Cerebral cortex (ACC)
 - Limbic system
 - Oropharynx/gustatory
Mechanisms of Nausea

• Autonomic nervous system overactivation
• Hyperesthesia/hypersensitivity
• Adrenal gland activation
 – Splanchnic efferents
 – Catecholamine release

The Management of Nausea: Key Clinical Questions

• Is this acute or chronic?
• Are warning signs present?
• Is this related to the GI tract or to another organ system?
• Are special conditions present?
• What tests have been performed?
• What treatment options are available?
Is this Acute or Chronic?

- **Acute** - ≤ 4 weeks in duration
 - Infectious, toxins, medications, recent surgery, obstruction, inner ear disorders
- **Chronic** - > 4 weeks in duration
 - Gastroparesis
 - Dyspepsia/CUNV
 - Hepatobiliary
 - Medications
 - Functional abdominal pain
 - OIBD/Narcotic bowel syndrome
 - Psychogenic/psychological (bulimia)
 - Other (renal, cardiac, urinary, CNS, endocrine)

Are warning signs present?

- Persistent vomiting/hematemesis
- Odynophagia/dysphagia
- Unintentional weight loss
- Significant abdominal pain (out of proportion)
- Evidence of obstruction (distention)
- Associated headaches/CNS findings
- Change in mental status/vision
- Adverse events of chronic N & V
 - Dehydration, hypokalemia, metabolic alkalosis
Is nausea related to the GI tract or to another organ system?

- Musculoskeletal
- Renal
 - Nephrolithiasis, renal failure
- Urologic
 - Retention, obstruction
- Cardiac
 - CHF, arrhythmias, ischemia
- Endocrine
 - Diabetes, adrenal insufficiency
- CNS
 - Benign vs. malignant

Common GI Etiologies of Nausea

- Mucosal inflammation
 - PUD, gastritis, enteric infections, toxins, IBD, appendicitis, diverticulitis
- Functional dyspepsia
- Functional abdominal pain
- Gastroparesis
- Hepatobiliary disorders
- CIP – chronic intestinal pseudo-obstruction
- Mesenteric ischemia
- Eating disorders
- OIBD/Narcotic bowel syndrome
What treatment options are available?

- Diet
- CAM
 - Ginger, pressure band, acupuncture, acupressure
- Medications
- Behavioral therapy
- Hypnotherapy

Treatment Options:
Antiemetic Receptor Antagonists

- Histamine Receptor Antagonists
- Dopamine Receptor Antagonists
 - Butyrophenones, olanzapine, phenothiazines
- 5-HT₃ Receptor Antagonists
 - Granisetron, ondansetron, palonosetron
- Dopamine/5-HT₃ Receptor Antagonists
 - Metoclopramide, olanzapine
- NK1 Receptor Antagonists
 - Aprepitant, fosaprepitant, netupitant, rolapitant
- Others (substance P, endorphins, GABA, TRPV-1)
Antiemetic Therapy

- Phenothiazines (promethazine, prochlorperazine)
- Antihistamines (meclizine, diphenhydramine)
- Anticholinergics (scopolamine, atropine)
- DA-2 antagonists (metoclopramide, domperidone)
- 5HT-3 antagonists (ondansetron)
- Butyrophenones (droperidol, haloperidol)
- Cannabinoids (marinol)
- Steroids (dexamethasone, prednisone)
- NK1 receptor antagonists (aprepitant)
- Others: tigan, lorazepam, olanzapine, gabapentin, opioids

Aprepitant

- NK1 receptor antagonist (NK₁ RA)
- Inhibits binding of substance P
- May act in area postrema and NTS
- Primarily acts centrally
- 40 mg p.o. q day x 1-3 days
- FDA approved for the prevention of CINV
- Further efficacy when added to ondansetron and dexamethasone
Olanzapine

- Originally approved as an anti-psychotic
- DA-2 RA and 5-HT3 RA
- Used off-label in CINV
- 10 mg p.o. q day x 3-4 days

Chronic nausea: Conclusions

- Common
- Challenging
- All nausea is not from the GI tract
- Carefully consider the clinical utility of tests
- Treat the symptoms
- 4-6 week trials and maximize the dose
- Feel confident using combination therapies
Symptoms and Gastric Emptying in FD Patients

- 218 consecutive FD patients (Rome II; mean age = 39; 69% women)
- Symptoms measured q 15 minutes for 4 hours after standardized meal
- 4-hr 14C-octanoic acid breath tests (20% delayed)
- Intensity of FD symptoms increased at 15 min intervals -79% reported meal-related symptoms
- No correlation between symptoms and gastric emptying

SNRIs (Selective serotonin and Norepinephrine Reuptake Inhibitors)

- Venlafaxine (Effexor XR)
- Multicenter, R, DB, PC
- 160 Patients, 8 weeks of therapy; mean age = 52
- Symptoms, HRQOL, HADS measured
- Results: No difference between venlafaxine & placebo
- The absence of anxiety was an independent predictor of improvement in symptoms

Van Kerkhoven et al, Clin Gastroenterol Hepatol 2008; 6:746-752

Acotiamide (Z-338)

- Multicenter, R, DB, PC, phase III trial
- 892 Rome III FD-PDS patients, 20-64 yrs
- Co-existing EPS allowed
- GERD and IBS patients excluded
- 100 mg acotiamide or placebo t.i.d. x 4 weeks
- Follow-up at 4 weeks
- 2 primary efficacy end points:
 - Overall treatment effect (OTE)
 - Elimination rate of 3 cardinal (meal related) Sx

Matsueda et al, Gut 2012, 61:821-828
Acotiamide (Z-338)

• Primary end point – OTE
 – 52.2% on acotiamide vs. 34.8% on placebo
 – (p < .001; NNT = 6)

• Elimination rate of all 3 meal related symptoms
 – 15.3% in acotiamide patients vs. 9% for placebo
 – (p < .001; NNT = 16)

• Adverse Events
 – 56% acotiamide vs. 60.4% placebo (n.s.)