Use of Anti-TNF Antibodies and Other Serologies for Managing IBD

Christopher J. Shepela, MD, MS
Assistant Professor of Medicine
University of Minnesota
Medical Director at Digestive Disease Center at Regions Hospital St. Paul, MN

Personalized Medicine: IBD

• Why does this apply to IBD?
 – IBD involves a heterogeneous group of patients with inherently variable disease courses.

• What is involved?
 – Identifying those at high risk for rapid progression
 – Tailoring treatment strategies to:
 • maximize response
 • minimize loss of response/relapse
 • address risks associated with specific medications in certain patient populations

Personalized Medicine (PM): IBD

• Tools available or in development to meet these goals
 – Therapeutic Drug Monitoring
 – Serology and Biomarkers
 – Genetic testing
 – Microbiota Analysis

PM: Serology and Biomarkers

• Originally used for diagnosis, role now more for predicting phenotype (prognosis).
• Serological expression of immune response may represent this host gene-luminal bacterial interaction.
• Major serologic responses measured in humans:
 – ASCA = Anti-Saccharomyces cerevisiae (baker’s yeast)
 – OmpC = Anti-outer membrane porin C of E coli
 – I2 = CD related protein from Pseudomonas fluorescens
 – pANCA = perinuclear anti-neutrophil cytoplasmic antibody
 – Flagellin Antibodies = CBir1, anti-A4-Fla2, anti-FlaX
PM: Serology and Biomarkers

- Presence of such antibodies have been associated with complicated Crohn’s disease:
 - penetrating and stricturing disease, need for surgery and post-operative recurrence.
- Serology NOT helpful in predicting response to therapy, but newer biomarkers may be helpful.
 - Apolipoprotein A1/E, complement C4B, Beta2 glycoprotein, clusterin
- Not currently standard practice, but knowledge of serology may help guide medication choice.

PM: Genetics

- Over 163 loci have been linked to IBD (30 CD and 23 UC specific), but only represent a limited view of heritability.
- Current/Future Roles
 - Predicting course of disease (e.g. NOD2)
 - Predicting side effects of medications (e.g. IL23R)
- May be most valuable when combined with serologic and clinical disease factors.

Lees CW et al. Gut.2011;60(12):1739
PM: Fecal Microbiota

- Advances in microbial analysis allow sequencing the microbiomes of IBD patients and monitoring for change.
- Depletion of certain *Firmicutes* and *Bacteroides* have been associated with active disease, relapse risk and medication responsiveness.
- Success of fecal microbiota transplantation (FMT) studies has been mixed.
 - Sub analyses suggest greater success with acquisition of the donor microbial signature and acquisition of specific bacterial flora and the compounds they produce.

Moayyedi P; et al. Gastro. 2015;149(1):102

Therapeutic Drug Monitoring (TDM)

- The process of measuring serum levels with dosing titration to achieve a concentration within a prescribed therapeutic range.
- Used commonly in transplant patients (e.g. with tacrolimus, cyclosporine) and with certain antibiotics.
- In IBD:
 - Longer experience with azathioprine/6MP, more recent experience with biologic TNF antagonists.
Thiopurine Drug Metabolism

Each individual's TPMT activity results in differences in metabolism, directly affecting efficacy and risk of toxicity

TDM: Azathioprine

- Measuring thiopurine methyltransferase (TPMT) enzyme levels allows prediction of myelosuppression and hepatotoxicity.
- Metabolites help with efficacy and safety:
 - Therapeutic window for 6-TGN is 230-400, above this myelosuppression risk increases.
 - A 6-MMP >5700 is associated with 3x >hepatotoxicity
- Other applications of TDM:
 - When 6-MMP:6-TGN ratio is 12:1-20:1, consideration of allopurinol 100mg + azathioprine 50 mg may be indicated.
 - For combo therapy, a level of 6-TGN of 125 pmol/8x10⁸ RBCs
 - Benchmark level when TPMT >30.

TDM: Infliximab (IFX) and other biologics

• Rationale:
 – Lack of response and durability of current biological anti-TNF agents.
 – Post hoc analysis of the registry trials for infliximab (ACCENT I) and SONIC showed an association between higher levels and remission.
 – Across a number of studies, there was a significant difference in level among those in clinical remission vs. relapse (RR 2.9) and in those achieving endoscopic remission (RR 3).

Moore C et al. J Crohns colitis 2016; Epub ahead of print

TDM: Definitions

• Pharmacokinetics
 – Definition: the study of absorption, distribution and elimination of a given medication.
 – Varies by drug make up, route of administration, degradation and elimination.
 • IV has high peak and is more predictable than SQ
 • Elimination of mAbs by reticuloendothelial system, but ½ life varies by type (murine 1-2d), chimera (10-14d), humanized (10-20d), mAb+PEG (+2 weeks)
 • Clearance is affected by albumin, BMI, gender, inflammation state, use of immune modulators and anti-drugs antibodies.

Vaughn BP et al. Inflamm Bowel Dis 2015; 21(6):1435
TDM: Concentration testing options

- Enzyme-linked immunosorbent assay (ELISA)
 - Can detect IFX at .002-1.4mcg/ml threshold. Can only detect antibodies (Ab) in absence of IFX drug.
- Radio-immunoassay (RIA)
 - Similar to ELISA, only in Europe
- Fluid phase mobility shift assay (FMSA).
 - Prometheus labs only, can detect both drug and Ab
- ECLIA (electrochemiluminescence immunoassay)
 - Labcorp only, can detect both drug and Ab.

- All the above are available for IFX, all but RIA for adalimumab (ADA) and only ELISA for certolizumab, vedolizumab.

Vaughn BP et al. Inflamm Bowel Dis 2015; 21(6):1435

TDM: Concentration cutoffs

- With biologics, the therapeutic window is not well defined, just the trough.
- The trough levels have been defined by association with remission rates, mucosal healing, CRP levels, histologic healing, fistula response.
- IFX: Study results range from 1.4-12 mcg/mL with most common goal range of 3-7 mcg/mL.
- ADA: 4.85-7.8 mcg/mL, most common is use of 4.9 mcg/mL.

Vaughn BP et al. Inflamm Bowel Dis 2015; 21(6):1435
Anti-TNF trough concentrations correlate with outcome

<table>
<thead>
<tr>
<th>Disease</th>
<th>Drug</th>
<th>Concentration</th>
<th>Clinical outcome</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD (Maser CGH 2006)</td>
<td>IFX</td>
<td>Detectable</td>
<td>Clinical remission, CRP, Endoscopic remission</td>
<td>Trough assessed after 1 year (range after 6-37 infusion)</td>
</tr>
<tr>
<td>CD (Cornillie GUT 2014)</td>
<td>IFX</td>
<td>>3.5</td>
<td>Sustained response</td>
<td>Post hoc analysis of ACCENT I</td>
</tr>
<tr>
<td>CD (Bortlik JCC 2013)</td>
<td>IFX</td>
<td>>3</td>
<td>Sustained response</td>
<td>Week 14 or 24 trough</td>
</tr>
<tr>
<td>CD (Lamblin JCC 2012)</td>
<td>IFX</td>
<td>>5.6</td>
<td>Reduced CRP</td>
<td></td>
</tr>
<tr>
<td>CD (Drohne Gastro 2011)</td>
<td>IFX</td>
<td>Undetectable</td>
<td>Loss of response</td>
<td></td>
</tr>
<tr>
<td>UC (Arias JCC 2012)</td>
<td>IFX</td>
<td>>7.19</td>
<td>Sustained response</td>
<td></td>
</tr>
<tr>
<td>UC (Seow GUT 2010)</td>
<td>IFX</td>
<td>Detectable</td>
<td>Higher rates of remission, Endoscopic improvement</td>
<td>Undetectable serum IFX associated with colectomy</td>
</tr>
<tr>
<td>CD/UC (Yanai AIG 2011)</td>
<td>IFX</td>
<td>>3.8</td>
<td>Failed to respond to increase in IFX or change to another anti-TNF</td>
<td>Population was patients with LOR</td>
</tr>
<tr>
<td>CD/UC (Roblin CHG 2014)</td>
<td>ADA</td>
<td>>4.9</td>
<td>Mucosal healing</td>
<td>Higher trough concentrations associated with clinical remission and mucosal healing</td>
</tr>
<tr>
<td>CD/UC (Yanai AIG 2011)</td>
<td>ADA</td>
<td>>4.5</td>
<td>Failed to respond to increase in ADA or change to another anti-TNF</td>
<td>Population was patients with LOR</td>
</tr>
<tr>
<td>CD/UC (Roblin CHG 2014)</td>
<td>ADA</td>
<td><4.9 ug/mL</td>
<td>Clinical response to ADA dose intensification</td>
<td>Prospective trial with ADA demonstrating benefit of dose optimization for low trough concentration</td>
</tr>
<tr>
<td>UC (Velayos CGH 2013)</td>
<td>ADA</td>
<td>>4.58 ug/mL</td>
<td>Week 12 clinical response</td>
<td>Week 2-4 concentration predicts week 12 response</td>
</tr>
<tr>
<td>CD (Colombel CGH 2014)</td>
<td>CTP</td>
<td>Higher quartile (mean value for highest quartile: 30.1 ug/mL)</td>
<td>Endoscopic and clinical response and remission</td>
<td></td>
</tr>
</tbody>
</table>

Adapted with permission from Vaughn BP

Immunogenicity and anti-drug Ab cutoffs

- **Immunogenicity**
 - Risk Factors: murine component, route of admin (SC>IV), dosing schedule, immunosuppressive use
 - Implications: secondary loss of response, acute or delayed infusion reactions, induction of autoimmunity.
 - Across studies, presence of antidrug Abs is associated with loss of clinical response and lower drug levels.

- **Cut-offs:**
 - High level(>15 mcg/mL) may be more detrimental than low level, but any level may increase clearance and infusion reaction risk.

Vaughn BP et al. Inflamm Bowel Dis 2015; 21(6):1435
How to use drug and antibody levels

• Categories of findings (make a 4 square here).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic drug, no antibody</td>
<td>Low drug, no antibody</td>
</tr>
<tr>
<td>Low drug, positive antibody</td>
<td>therapeutic drug, detectable antibody</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
</tbody>
</table>

• Response by scenario:
 – A- change agent, possibly mechanism
 – B- intensification
 – C- change agent, consider adding IM or intensification
 – D- consider intensification, addition of IM

Patient cases

• **Patient 1:** 25 yo male with history of UC x 7 years, on 5 mg/kg infliximab monotherapy for 5 years now with breakthrough symptoms in week 6-7. IFX level <1, Antibodies (ATI) = 6.4.
 – What would you do next?

• **Patient 2:** 50 yo woman with UC x 2 years after prolonged flare achieved remission on infliximab 5 mg/kg monotherapy with intolerance to MTX and AZA. Dose held 4 weeks due to surgical procedure that lead to flare and empiric increase to 10 mg/kg q6-8 weeks. After 9 months, in remission and tolerating doses every 8 weeks. Trough levels of IFX check with IFX concentration of 22 and ATIs undetectable.
 – What would you do next?
TDM in practice: Reactive Approach

• Empiric dose adjustment is most common.
• Most common use of TDM in practice: testing when patient is symptomatic.
• Potential benefits: identify those who would not benefit from escalation, decrease dose where appropriate.
• Outcomes of empiric dose escalation vs. optimization guided by reactive testing similar in response and remission, but at a greater cost.
• Confirm that IBD is active before testing

Confirm activity and consider other causes of symptoms.

• SIBO
• Bile Salt diarrhea
• Accentuated gastro-colic reflex
• Anorectal sphincter dysfunction
• Food intolerance, lactose intolerance, celiac sprue/NCGS
• Drug/meds (e.g. mesalamine, MMF, non-GI meds)
• Infections- SSCE, C. diff, CMV, Parasites
• Intestinal stricture or obstruction, Intra-abdominal adhesions
• IBS

SSCE = Salmonella, Shigella, Campylobacter, E. coli
How to use drug and antibody levels

• Categories of findings:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Therapeutic drug, no antibody</td>
<td>Low drug, no antibody</td>
</tr>
<tr>
<td>Low drug, positive antibody</td>
<td>Therapeutic drug, detectable antibody</td>
</tr>
</tbody>
</table>

• Response by scenario:
- A- change agent, possibly mechanism
- B- intensification
- C- change agent, consider adding IM or intensification
- D- consider intensification, addition of IM

Outcomes based on IFX concentration and Antibody status

• Test results impacted treatment in 73% of pts.

<table>
<thead>
<tr>
<th>TDM results</th>
<th>Action</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtherapeutic IFX</td>
<td>Dose escalation</td>
<td>Response* 86%</td>
</tr>
<tr>
<td>Subtherapeutic IFX</td>
<td>Switch anti-TNF</td>
<td>Response 33%</td>
</tr>
<tr>
<td>Therapeutic IFX</td>
<td>No Action</td>
<td>62% in complete remission</td>
</tr>
<tr>
<td>Antibodies detected</td>
<td>Switch anti-TNF</td>
<td>Response 92%</td>
</tr>
<tr>
<td>Antibodies detected</td>
<td>Dose escalation</td>
<td>Response 17%</td>
</tr>
</tbody>
</table>

*complete or partial response

Dose escalation of adalimumab after loss of response

<table>
<thead>
<tr>
<th>Group</th>
<th>ADA level Antibody status</th>
<th>Clinical Remission 6-months (%)</th>
<th>Durability of Response (mo)</th>
<th>Clinical Remission in failures switched to IFX (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ADA >4.9 No AAA</td>
<td>29</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>B</td>
<td>ADA <4.9 No AAA</td>
<td>67</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>C</td>
<td>ADA <4.9 AAA >10</td>
<td>12</td>
<td>5</td>
<td>80</td>
</tr>
</tbody>
</table>

confirmed reactive IBD or concern for antibody mediated side effect

ATI Positive

- High level ATI (>15 ug/ml)
 - Change to different anti-TNF
 - If failed multiple anti-TNFs change class
 - Consider surgery

- Low level ATI (<15 ug/ml)
 - Increase dose

ATI Negative

- Therapeutic* or high IFX concentration
 - Unlikely to get benefit from increased IFX or alternate anti-TNF. Change class outside of anti-TNF and/or consider surgery

- Low* IFX concentration
 - Increase IFX dose
 - If level undetectable consider increase dose and next infusion at 6 weeks
 - Consider addition of IMM

Patient case #3

- 33 y.o. female who has secondary loss of response to ADA. Addition of AZA and reload with shorter intervals has recaptured response and remission for 6 months. Now she is flaring once more:
 - How do you approach the next biologic? Combo vs. monotherapy? Early optimization by week 14 with level monitoring?

TDM in practice: Proactive Approach

- Definition:
 - checking a level of drug early on to allow optimization of the drug level into a therapeutic window to minimize loss of response and antibody development.

- Retrospective data of the outcomes of proactive monitoring vs. usual care (empiric dose change and reactive testing) in a single center cohort showed:
 - >durability of infliximab and higher trough [] as a surrogate for continued remission.

Proactive testing in IBD: TAXIT

- **Trough level Adapted infliXImab Treatment (TAXIT)** trial.
- Patients: Infliximab maintenance therapy with stable clinical response
- All patients underwent infliximab dose optimization to trough level of 3-7 ug/mL
- Randomized to:
 - Infliximab dosing based on clinical symptoms and CRP
 - Infliximab dosing based on trough concentration (proactive)
- Primary outcome: Clinical remission at 1 year

TAXIT algorithm

- **TLI measurement**
 - Undetectable TLI (TLI <0.3 µg/mL)
 - ATI measurement
 - High ATI level (ATI >8 µg/mL)
 - Stop
 - Low ATI level (ATI <8 µg/mL)
 - **TLI <3 µg/mL**
 - 1) interval decrease (by 2 weeks) to min 4 weeks
 - **3 µg/mL ≤ TLI ≤ 7 µg/mL**
 - 2) dose increase (by 5 mg/kg) to max 10 mg/kg
 - **TLI >7 µg/mL**
 - interval increase (by 2 weeks)
 - no dose adaptation

Vande Casteele et al. Gastroenterol. 2015; 148: 1320-9
TAXIT

Infliximab trough levels

- undetectable TLI
- TLI < 3µg/ml
- 3 µg/ml ≤ TLI ≤ 7 µg/ml
- TLI > 7 µg/ml

Figure: infliximab trough level (TLI) at time of screening (n=275)

Vande Casteele et al. Gastroenterol. 2015; 148: 1320-9

TAXIT results

- Dose escalation for Crohn’s disease improved disease control

Before optimization

After optimization

HBI < 5 (clinical remission)

64.3%

88.1%

*p=0.02

Vande Casteele et al. Gastroenterol. 2015; 148: 1320-9
TAXIT results

• Primary endpoint - 1 year after optimization:
 – No difference in remission rates between concentration dosed and clinically dosed groups (p=0.77)

• Secondary endpoint:
 – Concentration-dosed group needed rescue therapy less frequently than clinically dosed group
 • 5.5% vs. 17.3% (p=0.004)
 – Non-significant trend towards fewer acute infusion reactions

• Similar cost between both groups

TAXIT: Recommendations

1. Dose optimize to achieve IFX trough levels within interval 3-7 µg/mL

2. Re-evaluate levels after 6 months
TDM in practice: Proactive Approach

- **Patient in remission on maintenance IFX therapy**
 - **ATI Positive**
 - **High-level ATI (≥150 µg/mL)**
 - Change to different anti-TNF
 - If failed multiple anti-TNFs, change class
 - Consider surgery
 - **Low-level ATI (<150 µg/mL)**
 - Increase dose
 - **High IFX concentration**
 - Reduce dose
 - If at 3mg/kg extend interval
 - **Therapeutic IFX concentration**
 - Continue IFX dose and interval
 - Consider re-check in 6-12 months
 - **Low IFX concentration**
 - Undetectable level: increase dose to 7.5mg/kg and consider next dose at 4 or 8 weeks
 - Low level: increase IFX by 50-100mg

Vaughn BP et al. Inflamm Bowel Dis 2015; 21: 1435 - 42

TDM: Cost-Effectiveness

- **Potential costs:**
 - Cost of the test, cost of the drug increase in someone clinically stable
- **Potential savings:**
 - Prevention of flares, hospitalizations and surgeries.
 - De-escalation of drug dose (15-27% from limited studies)
- **As new tests are developed, cost should fall.**

- **Modeling data:** TDM $31,870 vs $37,266/QALY
- **TAXIT data:** TDM 20,723 Euros vs 21,023/QALY

Vande Casteele et al. Gastroenterol. 2015; 148: 1320-9
TDM in practice: future directions

- Guidance for de-escalation of therapy
- Empiric monotherapy with early dose optimization
- Individualized dosing by disease phenotype (e.g. fistulae), CD, UC and age/pregnancy.
- Further tailoring choice of initial medications to individual patients.

Summary: take home points

- Of serologic tests, therapeutic drug monitoring (TDM) is the most applicable to clinical practice at present.
- Both reactive and proactive TDM have advantages over empiric dosing changes.
- Proactive TDM may help prevent relapse, antibody formation and possibly monotherapy with less risk.