Esophageal Strictures, Leaks and Emergencies

Gregory G. Ginsberg, MD, FACP, FASGE
Professor of Medicine
University of Pennsylvania Perelman School of Medicine
Gastroenterology Division
Executive Director of Endoscopic Services
University of Pennsylvania Health Systems
Abramson Cancer Center

20 min

Disclosures

- Olympus Inc. – Consultant
- Boston Scientific – Consultant
- Microinterventions – Consultant
- Fractyl – Consultant

- Off-Label Use Discussed:
 - Self-expanding esophageal stents for benign stricture indications
Esophageal Strictures, Leaks and Emergencies

- Learning objectives:
 - Be familiar with the endoscopic diagnosis and management of routine and refractory esophageal strictures
 - Know the options for endoscopic management of esophageal leaks and fistulae
 - Be knowledgeable about the management of acute esophageal perforation

Esophageal Strictures: Assessment

- Etiology
- Duration
- Location
- Diameter
- Length
- Complexity
 - Multi-focal, angularity
Esophageal Strictures: Planning Strategies

- Stricture characteristics
 - Pre-procedure barium study?
- Availability of fluoroscopy
 - Can you traverse with the scope?
- Endoscope availability
 - Small caliber scope?
- Initial vs. subsequent

Esophageal Dilation: Fixed Diameter vs. Pneumatic?
Esophageal Dilation Equipment: “The not so great debate”

- **Fixed-Diameter Catheter Dilators**
 - Polyvinyl
 - Graded sizes (FR/mm)
 - Taper-tipped
 - Wire-guided
 - Reusable
 - Savary-Guillard
 - American Endoscopy

- **Balloon Dilators**
 - Pneumatic
 - Through-the-scope (TTS)
 - Wire-guided
 - Variable Radial Expansion
 - Single-use

Esophageal Dilation: Fixed Diameter vs. Pneumatic?

- Insufficient evidence to indicate a safety or efficacy advantage
- Interchangeable for most indications
- FDCD are preferred* (*in my opinion)*:
 - Tactile sensation
 - Rule of 3
 - Definitive diameter
 - Dilation along the entire esophageal lumen
 - Affordability
Fixed Diameter Tapper-Tip Catheter Dilation Technique: 1

Fixed Diameter Tapper-Tip Catheter Dilation Technique: 2
Malignant Esophageal Stricture:
Fully Covered Self Expanding Metal Stents

- **Etiology**
 - Adeno CA, SCCA, Metastatic
 - Extrinsic compression
 - Consider concurrent endobronchial stent
- **Location**
 - Proximal, Mid, EGJ
- **Fistula**
- **Concurrent therapies**
 - Chemo-radiotherapy

Gastrointest Endosc 2012;76:44-51

Benign Esophageal Strictures

- Peptic
- Rings
- Webs
- Eosinophilic
- Congenital/Atresia
- Systemic condition
- Caustic
- Radiation
- Pill induced
- ICU/NG-Tube
- Post-sclerotherapy
- Post-PDT
- Circumferential ELR
- EMR plus RFA
- Anastomotic
 - Esophagectomy
 - Anti-reflux
 - Bariatric
Refractory/Recurrent Strictures

Benign refractory esophageal Strictures (BRES)

- Effective acid suppression (?)
- Infiltrative carcinoma (?)
- Eosinophilic (?)
- Systemic process (?)
- Anastomotic/Laryngectomy
 - Q 1-2 wk dilations
 - Incrementally increasing diameter
 - Up to 18-20 mm
 - Gradual interval expansion

Corticosteroid Injection

- Consider after recurrent stricture with no improvement following incremental dilation
- Kenalog
 - 10 mg/ml
 - Sclerotherapy needle
 - 1-2 cc circumferentially
 - Dilate after/before injection (?)
- Results are inconsistent
- Expand dilation intervals

World J Gastrointest Endosc 2010 February 16; 2(2): 61-68
Tissue Incision

- Scissor
- Needle knife

Stenting for Benign Strictures

- **Goal:** Durable tissue remodeling
- **SEPS**
 - Fully covered
 - Approved for benign indications
- **SEMS**
 - Fully covered
 - Not approved for benign indications
 - Partially covered
 - Not approved for benign indications
 - Epithelial hyperplasia
 - Blessing and a curse
Fully Covered SEPS
- Expandable
- Polyester
- Silicone-covered
- Retrievable
- FDA approved for BRES

Migrated SEPS
- 30% stent migration
- Durable stricture resolution 23%

Not FDA approved for use in benign disease

- Retrospective analysis from 6 referral centers
- A total of 329 stents were removed including
 - 265 (80.5%) SEMS
 - fully covered N = 171 (64.5%)
 - partially covered N = 94 (35.5%).
 - 64 (19.5%) SEPS
- Indications
 - benign strictures N = 158 (48.0%)
 - fistulas N = 164 (49.8%).
- Mean stenting time was 60 days (inter-quartile range 57, range 0 – 659 days).
- At time of removal
 - 91 (27.7%) stents had migrated
 - 15 stents (4.6%) severely embedded by granulation tissue.
Majority of stent removed with grasping forceps or snare

Stent-in-stent technique for embedded SEMS
- 7 biodegradable stents
- 4 FCSEMS
- 1 SEPS
- both stents removed as one using a RTF after a mean 12 days (range 6 – 21)

35 (10.6%) removal-related complications
- 7 (2.1%) major complications
 - perforation 3 (0.9%), esophageal avulsion 1 (0.3%), stridor requiring intubation 1 (0.3%), embedment requiring surgical removal 1 (0.3%) and fistula 1 (0.3%).
Anastomotic BRES

FCFDMS for BRES

*not all FDA approved for this indication

- Provide immediate and durable relief of dysphagia while in place
- Effective tissue-remodeling to achieve durable post-stent dysphagia relief is variable – and may be disappointing
- Stenting for BRES is not without risk
 - Epithelial hyperplasia,
 - 4% fistula rate (XRT, poor performance status) [Gastrointest Endosc 2013;77:181-9]
- Often optimal therapy for selected patients with BRES
 - Optimal indications, duration, interval manipulation, materials, diameter remain unknown
Esophageal Leaks and Fistulae

- **Etiologies**
 - Iatrogenic
 - Operative
 - Anastomotic, Bariatric, Heller myotomy
 - Endoscopic
 - EMR, ESD, dilation
 - Malignant T-E fistula
 - Boerhaave syndrome

- **Endoscopic therapies**
 - Stents
 - FCSEMS, PCSEMS, FCSEPS
 - Closure
 - TTS clips
 - OTS clips
 - Suturing
 - Sealants
 - Fibrin glue

Tools for Esophageal Leaks and Fistulas

[Images of various tools used for endoscopic treatments]
Ischemic RYGBP Anastomosis

Covered Stent Therapy
Endoscopic Clip Closure

Management of Acute Esophageal Perforations

- High morbidity and mortality (10-40%)
- Individualized therapy
- Should only be undertaken with multidisciplinary collaboration
 - Thoracic Surgery, Diagnostic Imaging
- Supporting evidence is level C-D
 - Retrospective series
 - Expert opinion
Acute Esophageal Perforations

- Etiologies
 - Iatrogenic, Boerhaav, penetrating trauma, foreign object ingestion
- Underlying conditions
 - Malignancy, motility disorder
- Timing of presentation
 - < 12 hrs, > 24 hrs, presence of sepsis
- Diagnostic imaging
 - CXR, CT scan, Gastrografin esophagram, EGD
- Location
 - Proximal vs distal

Predictors of Successful Non-Operative Management

Factors associated with success of nonoperative management

- Recent perforation
- Well-circumscribed perforation
- Not perforated within the abdominal cavity
- Contained cavity that drains back into esophagus
- No free extravasation of contrast into body cavities
- No malignancy, obstruction, or stricture in region of perforation
- No evidence of sepsis
- Minimal symptoms

Raminder Nirula, MD, MPH
Stent Therapy

- 76 consecutive acute EP
- Median age 64
- 90% distal esophagus
- 67% iatrogenic
- NPO, IV antibiotics
- < 24 hrs covered stent placement
- Serial Gastrografin swallow to confirm leak sealed
- Mean ICU stay 3 days
- Chest drainage of visible collections
- 1/3 prolonged intubation
- Nutrition support

Predictors of Successful Endoscopic Closure of Gastrointestinal Defects: Experience from a Single Tertiary Care Center

Kamron Pourmand 1 · Brian Riff 2 · Michael L. Kochman 1 · Gregory G. Ginsberg 2 · Vinay Chandrasekhar 2 · Nuzhat A. Ahmad 2

Table 2 Technical success and clinical resolution classified by defect type

<table>
<thead>
<tr>
<th>Defect type (total patients)</th>
<th>TS (%)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaks (n=23)</td>
<td>22 (95.6)</td>
<td>15 (65.2)</td>
</tr>
<tr>
<td>Anastomotic (n=13)</td>
<td>13 (100)</td>
<td>10 (76.9)</td>
</tr>
<tr>
<td>Post-gastric sleeve (n=7)</td>
<td>7 (100)</td>
<td>3 (42.9)</td>
</tr>
<tr>
<td>Post-RYGB (n=3)</td>
<td>2 (66.6)</td>
<td>2 (66.6)</td>
</tr>
<tr>
<td>Fistulas (n=22)</td>
<td>19 (86.3)</td>
<td>15 (68.2)</td>
</tr>
<tr>
<td>Tracheoesophageal (n=11)</td>
<td>10 (90.1)</td>
<td>9 (81.2)</td>
</tr>
<tr>
<td>Enterocutaneous (n=7)</td>
<td>7 (100)</td>
<td>5 (71.4)</td>
</tr>
<tr>
<td>Large bowel (n=3)</td>
<td>2 (66.6)</td>
<td>1 (33.3)</td>
</tr>
<tr>
<td>Gastro-gastric (n=1)</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Esophageal ruptures (n=5)</td>
<td>5 (100)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Overall (n=50)</td>
<td>46 (92)</td>
<td>34 (68)</td>
</tr>
</tbody>
</table>

RYGB Roux-en-Y gastric bypass, TS technical success, CR clinical resolution
Predictors of Successful Endoscopic Closure of Gastrointestinal Defects: Experience from a Single Tertiary Care Center

Kamron Pourmand¹ • Brian Riff² • Michael L. Kochman³ • Gregory G. Ginsberg² • Vinay Chandrasekhar² • Nuzhat A. Ahmad²

Table 3 Clinical outcomes based on defect acuity

<table>
<thead>
<tr>
<th>Defect type (total patients)</th>
<th>TS (%)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaks (n=14)</td>
<td>14 (100)</td>
<td>13 (92.3)</td>
</tr>
<tr>
<td>Anastomotic (n=10)</td>
<td>10 (100)</td>
<td>9 (90)</td>
</tr>
<tr>
<td>Post-gastric sleeve (n=3)</td>
<td>3 (100)</td>
<td>3 (100)</td>
</tr>
<tr>
<td>Post-RYGB (n=1)</td>
<td>1 (100)</td>
<td>1 (100)</td>
</tr>
<tr>
<td>Fistula (n=8)</td>
<td>9 (90)</td>
<td>9 (90)</td>
</tr>
<tr>
<td>Tracheoesophageal (n=10)</td>
<td>9 (90)</td>
<td>9 (90)</td>
</tr>
<tr>
<td>Esophageal ruptures (n=5)</td>
<td>5 (100)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Overall (n=29)</td>
<td>28 (96.6)</td>
<td>26 (89.7)</td>
</tr>
<tr>
<td>Chronic defects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leaks (n=9)</td>
<td>8 (88.9)</td>
<td>2 (22.2)</td>
</tr>
<tr>
<td>Anastomotic (n=3)</td>
<td>3 (100)</td>
<td>1 (33.3)</td>
</tr>
<tr>
<td>Post-gastric sleeve (n=4)</td>
<td>4 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Post-RYGB (n=2)</td>
<td>1 (50)</td>
<td>1 (50)</td>
</tr>
<tr>
<td>Fistula (n=12)</td>
<td>10 (83.3)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Tracheoesophageal (n=1)</td>
<td>1 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Enterocutaneous (n=7)</td>
<td>7 (100)</td>
<td>5 (71.4)</td>
</tr>
<tr>
<td>Large bowel (n=3)</td>
<td>2 (66.6)</td>
<td>1 (33.3)</td>
</tr>
<tr>
<td>Gastro-gastric (n=1)</td>
<td>0 (0)</td>
<td>N/A</td>
</tr>
<tr>
<td>Overall (n=21)</td>
<td>18 (85.7)</td>
<td>8 (38)</td>
</tr>
</tbody>
</table>

Further Reading on Endoscopic Therapy for Esophageal Leaks and Fistulae

Endoscopic Management of Gastrointestinal Leaks and Fistulae

Field F. Willingham* and Jonathan M. Buscaglia

Tissue adhesives: cyanoacrylate glue and fibrin sealant

Volume 78, No. 2 : 2013 GASTROINTESTINAL ENDOSCOPY 209

Endoscopic closure devices

GASTROINTESTINAL ENDOSCOPY Volume 76, No. 2 : 2012
Esophageal Strictures, Leaks and Emergencies

Summary:

- Be familiar with the endoscopic diagnosis and management of routine and refractory esophageal strictures
- Know the options for endoscopic management of esophageal leaks and fistulae
- Be knowledgeable about the management of acute esophageal perforation