Overview of stents

- Esophageal
- Gastroduodenal
- Colonic
Esophageal stents

- Malignant obstruction is main indication
- Stents for intrinsic tumors highly effective
 - Esophageal adenocarcinoma
 - Esophageal squamous cell carcinoma
 - GE junctional tumors
- Stents for extrinsic tumors less effective
 - Lung cancer and metastatic cancer
- Tracheo-esophageal (TE) fistula closure

Esophageal stent types

- Self expandable metal stents (SEMS)
 - Various metals and alloys
 - **Covered**: resist tumor ingrowth but more migration
 - Fistulas and perforations
 - **Partially covered**: uncovered at ends, less migration
 - **Uncovered**: more ingrowth, less migration
- Various lengths (6-20 cm) and widths (10-23 mm)
- Self-expandable plastic stents: rarely used
Technique of stent placement

- Review existing studies
 - Endoscopies
 - X-rays (CT scans and barium swallow studies)
- Define stricture during endoscopy
- Most use fluoroscopic guidance and guidewire
- Stent choice 4 cm longer than stricture length
- Potential for compression of trachea and airway compromise in proximal tumor

Esophageal stent goals

- Minimize dysphagia symptoms
- Allow oral hydration
- Allow oral nutrition
 - Liquids and soft mechanical
 - Need to avoid certain foods
 - Fibrous (broccoli)
 - Dense (large pieces of meat)
- Allow oral medication delivery
Esophageal stent efficacy

- Most with malignant esophageal obstruction undergoing stents will tolerate liquids (>95%)
- Dysphagia scored 0 (no dysphagia) to 4 (inability to swallow saliva)
- In patients with potentially resectable tumor undergoing neoadjuvant chemotherapy dysphagia scores improve from 2.4 to 1
- Effective for anastomotic recurrence post surgery
- Less effective if extrinsic, as dysphagia score decreases from 3 to 2 compared to 1 in intrinsic

Siddiqui AA. Gastrointest Endosc 2012;76:44-51

Complications

- Chest pain
- GERD (stents across GE junction)
- No improvement in dysphagia/stent malposition
- Tumor overgrowth or ingrowth (11%)
- Migration
 - Overall 7%
 - With neoadjuvant chemotherapy 30%
- Bleeding (0.6-4%)
- Perforation (0.6%)
- Airway compression
- TE fistula formation
- Death (related to stent in 0.5-2%)

Ramirez FC. Gastrointest Endosc 1997;45:360-4;
Siddiqui AA. Gastrointest Endosc 2012;76:44-51
Esophageal SEMS-induced pain

• Extremely common (10-15%)
• Multifactorial
 – Radial stent expansion
 – GERD
 – Primary tumor pain
• Stent pain typically resolves in 7 days
• Rarely intractable

Early vs. late stent placement in esophageal cancer

<table>
<thead>
<tr>
<th>Early</th>
<th>Late</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relieve dysphagia</td>
<td>Unresectable disease</td>
</tr>
<tr>
<td>Allow oral hydration</td>
<td>Treatment failures</td>
</tr>
<tr>
<td>Allow oral nutrition</td>
<td>TE fistulas</td>
</tr>
<tr>
<td>Allow oral medication</td>
<td>Same goals as for early</td>
</tr>
<tr>
<td>Obviates feeding tubes</td>
<td></td>
</tr>
</tbody>
</table>
Fully covered stents (FCSEMS)

- Malignant dysphagia
 - Consider in patients undergoing neoadjuvant therapy
- Benign refractory stenoses
- Benign TE fistulas
- Iatrogenic perforations
- Bariatric complications
- Boerhaave’s syndrome
- Variceal bleeding (SX-ELLA biodegradable stent)

Talreja SP. Surg Endosc 2012;26:1664-9;
Bège T. Gastrointest Endosc 2011;73:238-44;
Adler DG. Gastrointest Endosc 2009;70:614-9

FCSEMS migration in esophageal cancer

- Migration is *usually* associated with tumor response (not a bad outcome)
 - Loss of tumor bulk
 - Less severe esophageal stricture
 - Dislodgement of stent
- If patient has intact pylorus → stent unlikely to migrate
- If patient has had gastrectomy → migration
TE fistulas

Benign
- Iatrogenic
- Post surgical
- Post XRT
- Post intubation

Malignant
- Esophageal cancer
- Lung cancer
- Lymphoma

TE fistulas and stents

- Data mostly from case reports and small series
 - Mostly malignant TE fistulas
 - Publication reporting bias
- Success rates with dysphagia reported 70-100%
 - Most malignant TE fistulas not expected to close
 - Stents may not make an “airtight” seal
 - Some ongoing aspiration risk

Hagendorn J. *Nat Rev Gastroenterol Hepatol* 2010;7(12):702-6;
Hürtgen M. *Thorac Surg Clin* 2014;24:117-27
FCSEMS for benign fistulae or perforation

- Data from small series and case reports
- Overall success rate variable: 38-80%
- Outcomes best if stent placed early
 - Boerhaaves
 - Bariatric
 - Endoscopic
- Avoid mediastinal contamination

Bakken JC. Gastrointest Endosc 2010;72:712-20;
Senousy BE. Dig Dis Sci 2010;55:3399-403;

Stents for refractory benign esophageal strictures

- Usually reserved for treatment failures
 - Typically after dilation +/- steroids fail
- May need long term stenting or serial SEMS
- Surgery often not an option for these patients
- Overall effective in about 40%
- Migration rate of about 30%
- Not FDA approved for this indication

Fuccio L. Endoscopy 2015;Nov 3
Gastric stents

- Malignant gastric outlet obstruction (GOO)
- Inability of the stomach to empty
 - Gastric obstruction
 - Proximal small bowel obstruction
 - Functional
- Due to upper GI malignancy
 - Pancreatic cancer (most common in USA)
 - Gastric cancer (more common in Asia)
 - Metastatic cancer
 - Cholangiocarcinoma
 - Ampullary cancer

Symptoms of GOO

- Nausea
- Intractable vomiting
- Esophagitis
- Electrolyte imbalances
- Poor nutrition
- Dehydration
- Poor quality of life
GOO treatment selection and goals

- Treat patients with unresectable malignancy or recurrent malignancy
- Most appropriate in patients with short life expectancy (2-6 months)
- Relieve symptoms of obstruction
- Allow adequate nutrition and hydration
- Allow oral feeding
- Improve quality of life

Technique of stent placement

- Review existing studies
 - Endoscopies
 - X-rays (CT scans and upper GI series)
- Suction stomach completely and then define stricture by endoscopy if possible or by contrast injection and/or balloon insertion
- Use fluoroscopic guidance and guidewire
- Uncovered stent placed through a therapeutic scope (channel diameter ≥ 3.7 mm)
- Stent choice 4 cm longer than stricture length
GOO stent efficacy

- Most with malignant gastric obstruction will have technical success in stent placement (>90%)
- Clinical success in 80-90%
- Long-term success rates lower
- Liquid and soft food intake improves rapidly
- Complications are not infrequent but primarily stent obstruction and migration
- Improved quality of life
- Reintervention rates of 15-40% for recurrent symptoms or biliary obstruction post stenting

Dormann A. Endoscopy 2004;36:543-50;
van Halsema EE. World J Gastroenterol 2015;21(43):12468-81

Endoscopic stents vs. surgery

<table>
<thead>
<tr>
<th></th>
<th>Technical success (%) E/S</th>
<th>Clinical success (%) E/S</th>
<th>Tolerance of oral intake (days) E/S</th>
<th>Hospital stay (days) E/S</th>
<th>Complications (%) E/S</th>
<th>30-day mortality (%) E/S</th>
<th>Survival (days) E/S</th>
<th>Costs ($) E/S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yim</td>
<td>94/-</td>
<td>80.6/-</td>
<td>4/14</td>
<td>7/-</td>
<td>8/-</td>
<td>94/92</td>
<td>992/13256</td>
<td></td>
</tr>
<tr>
<td>Wong</td>
<td>100/-</td>
<td>100/-</td>
<td>4/15</td>
<td>16/41</td>
<td>0/18</td>
<td>110/64</td>
<td></td>
<td>7215-10190</td>
</tr>
<tr>
<td>Johnsson</td>
<td>100/87</td>
<td>100/81</td>
<td>7/15</td>
<td>28/26</td>
<td>76/99</td>
<td>7215-10190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fiori</td>
<td>100/100</td>
<td>100/90</td>
<td>2/6</td>
<td>3/10</td>
<td>11/11</td>
<td>0/0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maetani</td>
<td>100/100</td>
<td>80/84</td>
<td>1/9</td>
<td>15/30</td>
<td>40/32</td>
<td>25/16</td>
<td>54/79</td>
<td></td>
</tr>
<tr>
<td>Mittal</td>
<td>1/8</td>
<td>2/10</td>
<td>0/31</td>
<td>56/119</td>
<td>5756/13256</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Del Piano</td>
<td>96/100</td>
<td>92/56</td>
<td>1/-</td>
<td>3/24</td>
<td>17/81</td>
<td>0/30</td>
<td>96/70</td>
<td></td>
</tr>
<tr>
<td>Espinal</td>
<td>100/100</td>
<td>100/82</td>
<td>2/5</td>
<td>7/11</td>
<td>4/18</td>
<td>16/29</td>
<td>140/151</td>
<td></td>
</tr>
<tr>
<td>Lillemoe</td>
<td>.7/-</td>
<td>.9/-</td>
<td>.7/32</td>
<td>.7/-</td>
<td>.7/32</td>
<td>.7/32</td>
<td>140/151</td>
<td>249</td>
</tr>
<tr>
<td>Adler</td>
<td>100/-</td>
<td>97/-</td>
<td>3/22</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*E=Endoscopic SEMS; S=Surgery
Other treatment options

• Radiation therapy (XRT)
 – Can be effective, but takes time
• PEG with J tube
 – Allows nutrition, but no peroral feedings
• Direct PEJ
 – Allows nutrition, but no peroral feedings
• TPN
 – Not a great option for patients with advanced malignancy, and no peroral feedings

Bile duct obstruction and GOO

• Combined duodenal and biliary obstruction very common
 – Type 1: GOO above ampulla
 – Type 2: GOO at ampulla
 – Type 3: GOO distal to ampulla
• 44% of patients with GOO will develop jaundice before dying
 – Combined duodenal stenting with biliary stenting is an endoscopic gastrojejunostomy with biliary bypass
 – Place biliary stent first if accessible and strictured
Colonic stents

• All FDA approved devices are uncovered metal stents and not removable

• Indications
 1. Malignant large bowel obstruction for the palliation of advanced disease
 2. Benign/malignant strictures with obstruction to allow pre-op preparation and one-stage surgery

Kaplan J. World J Gastroenterol 2014;20:13239-45

Colonic stent treatment selection

• Patients with metastatic disease or who are poor operative candidates → stent

• Patients with metastatic disease who are good operative candidates → stent → surgery via one stage procedure

• Patients with resectable disease → stent → surgery via one stage procedure
 – Preoperative patients who undergo stenting first are less likely to have anastomotic leaks and dehiscences

Cheung HY. Arch Surg 2009;144:1127-32
Technique of stent placement

- Review existing studies
 - Endoscopies
 - X-rays (CT scans and barium enema studies)
- Consider intubation of patient
- Use fluoroscopic guidance and guidewire
- Uncovered stent placed through a therapeutic scope (channel diameter ≥ 3.7 mm)
- Stent choice 4 cm longer than stricture length

Diet post colonic stent

- Patients placed on soft solid or low residue diet
- Take mineral oil or laxatives regularly
- Avoid high fiber foods
- Patents with proximal colonic stents can consume a normal diet
Colonic stent efficacy

- Most reports for left-sided colonic obstruction
- Review of 88 studies:
 - Technical success in 96% (66-100%)
 - Clinical success in 92% (46-100%)
 - Duration of patency 106 days (68-288 days)
 - Reintervention rate 20% (0-100%)

Proximal colonic stenting

- Stents can be effectively placed anywhere in colon including the proximal colon
- Proximal vs. distal colon stents similar in:
 - Technical success
 - Clinical success
 - Complications

Repici A. Gastrointest Endosc 2007;66:940-944
Complications

• Abdominal pain common for about 5 days
• Migration: 11%
 – Uncommon in malignant obstruction
• Tumor overgrowth or ingrowth: 7-12%
• Perforation: About 5%
 – Much higher with bevacizumab (15-50%)
• Bleeding
 – Uncommon

Small AJ. Gastrointest Endosc 2010;71:560-72;
Manes G. Arch Surg 2011;146:1157-62

Colonic stents versus surgery

• Colonic stents:
 – Faster
 – Cost less
 – Shorter hospital stay
 – Shorter ICU stay
 – In operable patients, avoids colostomy

Law WL. Br J Surg 2003;90:1429-1433;
Sebastian S. Am J Gastroenterol 2004;99:2051-2057
FCSEMS for benign colonic strictures

- Very limited data
- Possible indications
 - Anastomotic strictures
 - Initial success in 100% (16 patients)
 - Prolonged success in 56% (better with 24-26 mm stent)
 - Possibly IBD and diverticular strictures
- Migration expected outcome
- Not FDA approved indication

Caruso A. *Surg Endosc* 2015;29:1175-78;
Vanbiervliet G. *Endoscopy* 2013;45:35-41

The future of luminal stenting

- Biodegradable stents
- Radioactive stents
- Drug-eluting stents
- Novel lumen approximating devices
Conclusions

• Self expanding metal stents have important roles in malignant luminal strictures
 – Esophageal, gastroduodenal and colonic
• Often obviates the need for surgery
• SEMS placement is safe and effective
• Colonic SEMS are effective bridges to surgery
• Surgery good option for those with expected prolonged survivals or for treatment failures