Inherited Colon Cancer Syndromes

Carol A. Burke MD, FACP, FACG, FASGE
Digestive Disease Institute
Sanford R. Weiss MD Center for Hereditary Colorectal Neoplasia
Cleveland Clinic, Cleveland

2014 ACG Board of Governors/ASGE
Best Practices Course

Hereditary Colon Cancer Syndromes

- Early age of onset (<50 yrs) of manifestations
- Synchronous or cumulative lifetime polyps
- Metachronous or synchronous cancers
- Multiple relatives/generations affected
- Family member with known HCCS

- Any of these should prompt referral for genetic counseling

2014 ACG Board of Governors/ASGE
Best Practices Course
Colorectal Cancer

Sporadic

FAP

MYH

Adenoma

CIN

MSI

Lynch Syndrome

CIMP

Serrated Neoplasm

MLH1 promotor methylation

BRAF mutation

MSI

2014 ACG Board of Governors/ASGE Best Practices Course

Chromosomal Instability

APC/β-catenin

KrAS

TP53, PIK3CA, loss of 18q

Normal mucosa

Aberrant crypt focus

Early adenoma

Late adenoma

Invasive cancer

EGFR, COX2

Increasing CIN

Pino MS, et al. NEJM 2010;339;1277

2014 ACG Board of Governors/ASGE Best Practices Course
CpG Island Methylation (CIMP)

Gene Expression

Gene Silencing

Microsatellite Instability

- Repeated nucleotide sequences called "microsatellites"
- 4 DNA Mismatch Repair (MMR) Genes: MLH1, MSH2, MSH6, PMS2
- DNA nucleotide replication errors repaired by MMR Proteins

MLH1 PMS2
MSH2 MSH6

Boland CR, Gastroenterology 2010;138:2073
Hereditary CRC Syndromes

<table>
<thead>
<tr>
<th>Autosomal Dominant</th>
<th>Autosomal Recessive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch Syndrome</td>
<td>MYH associated polyposis</td>
</tr>
<tr>
<td>Familial Adenomatous Polyposis</td>
<td></td>
</tr>
<tr>
<td>Peutz-Jeghers Syndrome</td>
<td></td>
</tr>
<tr>
<td>Juvenile Polyposis Syndrome</td>
<td></td>
</tr>
<tr>
<td>PTEN Hamartoma Tumor Syndrome (Cowden’s syndrome, Bannayan-Ruvalcaba-Riley Syndrome)</td>
<td></td>
</tr>
<tr>
<td>Hereditary Mixed Polyposis Syndrome</td>
<td></td>
</tr>
</tbody>
</table>

Hereditary CRC Syndromes

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Polyp Type</th>
<th>Gene Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lynch Syndrome</td>
<td>Adenomatous</td>
<td>MMR</td>
</tr>
<tr>
<td>FAP and attenuated FAP</td>
<td>Adenomatous</td>
<td>APC</td>
</tr>
<tr>
<td>MYH Associated Polyposis</td>
<td>Adenomatous</td>
<td>MYH</td>
</tr>
<tr>
<td>Peutz-Jeghers Syndrome</td>
<td>Hamartomatous</td>
<td>STK11</td>
</tr>
<tr>
<td>Juvenile Polyposis Syndrome</td>
<td>Hamartomatous</td>
<td>SMAD4 or BMPR1A</td>
</tr>
<tr>
<td>PTEN Hamartoma Tumor Syndrome</td>
<td>Hamartomatous</td>
<td>PTEN</td>
</tr>
<tr>
<td>Mixed Hyperplastic Polyposis Syndrome</td>
<td>Mixed</td>
<td>SCG5</td>
</tr>
</tbody>
</table>
Case 1

• 50 year old female: Second opinion
• No personal/family hx of cancer; 53 yo brother with polyps
• Colonoscopy 3 yrs prior for abnormal BMS, normal
• 3 mos ago EGD normal, screening colonoscopy:
 – Hepatic Flexure: 3mm and 10mm sessile polyp : tubular adenoma
 – Rectum: 2, small polyps: hyperplastic polyp, lymphoid aggregate
 – Cecum: Polypoid tissue, cannot be safely removed

• Recommendation: See a surgeon

Case 1
What is the next most appropriate step?

1. Surgical Consult for segmental colectomy
2. Surgical consult for total colectomy
3. Repeat Colonoscopy
4. Repeat Colonoscopy and EGD
Case 1

- 12 < 5 mm polyps throughout colon: Tubular adenoma
- 3, 8 -10 mm in cecum: 2 snared: TVA
- Submucosal injection, inadequate lift: TVA

Case 1

- EGD: ? manifestations of FAP or MAP
- Esophagus and stomach: normal
- Duodenum: 2, < 5 mm flat polyps: TA
- Papilla, normal appearing including biopsy
Case 1

What is the next most appropriate step?

1. Surgical Consult for segmental colectomy
2. Repeat Colonoscopy one year, sulindac
3. Genetic counseling

Genetic Counseling

- Patients with unusual phenotype
- Risk assessment
 - 3 generation family history; age and cause of death and cancer
- Education session
- Informed Consent for genetic testing
 - R, B, A and insurance coverage, out of pocket
- Providing results
- Recommended FU for proband and family
Genetic Testing in Polyposis Syndromes

- ≥10 cumulative lifetime adenomas
- > 20 adenomas for Medicare
- CRC < 50 yrs
- Desmoids
- Relatives of known APC or MYH mutation carriers (or other polyposis syndromes)

Colon Polyp Burden in FAP/MAP

- AFAP
- MAP
- FAP

0 adenomas 100 adenomas 1000 adenomas

Oligopolyposis

Gastroenterology 2001;121:195-7
NEJM 2003;348:791-99
Gastroenterology 2004;127:444-51
Gastroenterology 2004;127:9-16

2014 ACG Board of Governors/ASGE
Best Practices Course
Prevalence of *APC* and *MUTYH* mutations by lifetime adenoma Burden

![Graph showing prevalence of APC and MUTYH mutations by lifetime adenoma burden.](image)

Case 1

Total colectomy with ileo-rectal anastomosis
- Well differentiated adenocarcinoma in cecum at appendiceal orifice
- **TOTAL OF 6 TUBULAR ADENOMAS and MULTIPLE AND PROMINENT POLYPOID LYMPHOGLANDULAR COMPLEXES**

COMMENT: pT1pN0
Case 1: Follow Up

- Genetic counseling and testing
 - APC mutation testing *negative*
 - MYH mutations: Y165C and R231H
- Diagnosis: MYH associated polyposis
- Management recommendations
 - Inform family members
 - Offer genetic counseling and testing
 - Surveillance for polyposis

MYH associated polyposis (MAP)

- Autosomal recessive syndrome of adenomas and CRC
- Due to bi-allelic mutations in the MYH gene
- Colon features similar to attenuated FAP
- Extra-colonic features similar to FAP
- Board tip: Polyposis with recessive inheritance
Autosomal Recessive Inheritance (MAP)

Each child has a 25% chance of inheriting both MYH gene mutations (affected), a 50% chance of inheriting at least one MYH gene mutation, and a 25% chance of inheriting no MYH gene mutations.

FAP

- Due to APC mutation
- Affects 1:10,000 individuals
 - 30% cases de novo
- 60-100% risk of CRC

1Nieuwenhuis MH Cr Rev Onc Hem 2007;61:153
Gastric features of FAP/MAP

• Fundic gland polyposis
 – Prevalence: 88%
 – 50% with low grade dysplasia
 – 3% HGD, > 10 mm- resect

• Gastric adenomas
 – Prevalence: 10%
 – Usually antrum- resect

• Gastric Cancer: Rare

Duodenum in FAP/MAP

• Duodenal adenomas: 100%
• Adenomatous papilla¹:
 – 54% if normal appearance
 – 89% if abnormal appearance

• Periampullary/Duodenal cancer: 2-36%²
 – When occurs, all die of malignant disease
 – Cancer risk based upon stage of duodenal polyposis

¹Burke C, GIE 1999;49:358
²Groves C Gut 2002;50:636
Staging of Duodenal Polyposis

<table>
<thead>
<tr>
<th>No. of polyps</th>
<th>1 point</th>
<th>2 points</th>
<th>3 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4</td>
<td>1-4</td>
<td>5-20</td>
<td>>20</td>
</tr>
<tr>
<td>Polyp size (mm)</td>
<td>1-4</td>
<td>5-10</td>
<td>>10</td>
</tr>
<tr>
<td>Histology</td>
<td>Tubular</td>
<td>TVA</td>
<td>Villous</td>
</tr>
<tr>
<td>Dysplasia</td>
<td>Mild</td>
<td>Moderate</td>
<td>Severe</td>
</tr>
</tbody>
</table>

Spigelman AD. Lancet 1989;2: 783

<table>
<thead>
<tr>
<th>Stage</th>
<th>Points</th>
<th>Cancer Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1-4</td>
<td>0%</td>
</tr>
<tr>
<td>II</td>
<td>5-6</td>
<td>2.3%</td>
</tr>
<tr>
<td>III</td>
<td>7-8</td>
<td>2.4%</td>
</tr>
<tr>
<td>IV</td>
<td>9-12</td>
<td>36%</td>
</tr>
</tbody>
</table>

Gut 2002;50:636

Extra-intestinal features of FAP/MAP

- Desmoid tumors (15%)
- Thyroid carcinoma (2-15%)
- Adrenal adenoma (7-13%)
- Osteomas (50-90%)
- Supernumerary teeth (11-27%)
- CHRPE (70-80%)
- Soft tissue tumors (50%)
 - Lipoma, fibroma, sebaceous cysts
- Hepatoblastoma (<2%)

Thyroid Cancer in FAP/MAP

- Ultrasound and palpation in 192 pts
 - Thyroid cancer: papillary
 - 3% FAP
 - 15% MAP
 - Mean age: 44 yrs (35–60)
 - Size: 15 mm (range 6–23 mm)
 - Physical exam unreliable

UGI Surveillance FAP/MAP

<table>
<thead>
<tr>
<th>Stage</th>
<th>Interval</th>
<th>Method</th>
<th>Intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5 yrs</td>
<td>EGD/D</td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>3 yrs</td>
<td>EGD/D</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1 yr</td>
<td>EGD/D</td>
<td>Celecoxib 400 BID/Polyp eradication</td>
</tr>
<tr>
<td></td>
<td>3 yrs</td>
<td>Pill Cam</td>
<td></td>
</tr>
<tr>
<td>IV*</td>
<td>6 mo</td>
<td>EGD/D</td>
<td>Pancreas sparing duodenectomy</td>
</tr>
<tr>
<td></td>
<td>3 yrs</td>
<td>Pill Cam</td>
<td></td>
</tr>
</tbody>
</table>

D= duodenoscopy with bx of papilla
* Preferred approach is preventive surgery

Prophylactic Duodenal Surgery
Pancreas sparing Duodenectomy

Surveillance of FAP/MAP

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Procedure</th>
<th>Age (yrs)</th>
<th>Interval (yrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classic FAP</td>
<td>FS or colonoscopy*</td>
<td>10-15</td>
<td>1</td>
</tr>
<tr>
<td>aFAP/MAP</td>
<td>Colonoscopy*</td>
<td>18-20</td>
<td>1-2</td>
</tr>
<tr>
<td>Surgical Consult</td>
<td>Colonoscopy*</td>
<td>When polyps detected</td>
<td></td>
</tr>
<tr>
<td>Post operative</td>
<td>FS or pouchoscopy</td>
<td>NA</td>
<td>1</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Thyroid Ultrasound</td>
<td>Late teens</td>
<td>1</td>
</tr>
<tr>
<td>Duodenum</td>
<td>EGD- duodenoscopy</td>
<td>25</td>
<td>Based upon stage</td>
</tr>
</tbody>
</table>

NCCN guidelines v2 2013
FAP/MAP Surgery

- **Indications:**
 - Symptoms present, advanced adenomas or excess polyp burden
 - Severe polyposis
 - Total colectomy and ileorectal anastomosis (desmoids or low rectal burden)
 - Proctocolectomy and IPAA (if rectal burden high)
 - Oligopolyposis (< 100 polyps)
 - Colectomy and IRA

Chemoprevention of FAP/MAP

- **Adjunct to endoscopy**
- **Oligopolyposis:** Intact colon
- **High rectal polyp burden post operative**
 - Sulindac 150-200 mg BID - 50% reduction
 - Celecoxib 400 mg BID - 28% reduction
 - Steinbach G, NEJM 2000;342:1947
- **Duodenal polyposis**
 - Celecoxib 400 mg BID
Hereditary Non Polyposis Colon Cancer

- ≥ 3 relatives with CRC
- 1 FDR to other 2
- ≥ 2 successive generations
- 1 CRC diagnosed < 50 yrs

Mutations found in 50%
40% with LS don’t meet clinical criteria

Vasen HF et al, Dis Colon Rectum 1991

CRC in Lynch Syndrome

- Lifetime Risk: Varies by genotype
- Median age: 45 years
- Location: Usually right sided
- Pathology: Distinctive
- Recurrence: 40% at 20 yrs

Bonadonna V et al. JAMA 2011;2304
Tumor Microsatellite Instability Testing

NR21 BAT25 Mono27

Normal Tissue

Tumor Tissue

Immunohistochemistry

MLH1 MSH2

Can be done on formalin fixed, archival tumor specimens.

2014 ACG Board of Governors/ASGE
Best Practices Course

Courtesy Jennifer Hunt MD
Hereditary Non Polyposis Colon Cancer

HNPCC

Lynch Syndrome

Familial CRC Type X

MSI

Germline MMR Mutation

No MSI or MMR mutation

Lynch Syndrome

Extra-Colonic Cancer Risks

Koornstra JJ et al. Lancet Oncology 2009;10:400-408

2014 ACG Board of Governors/ASGE
Best Practices Course
Cancer Risk
Lynch Syndrome vs Type X

<table>
<thead>
<tr>
<th>Site of Cancer</th>
<th>SIR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lynch (MSI or MMR) (N=1855)</td>
<td>Type X (No MSI) (N=1567)</td>
</tr>
<tr>
<td>Colorectum</td>
<td>6.1*</td>
<td>2.3*</td>
</tr>
<tr>
<td>Uterus</td>
<td>4.1*</td>
<td>0.8</td>
</tr>
<tr>
<td>Stomach</td>
<td>4.6*</td>
<td>1.4</td>
</tr>
<tr>
<td>Kidney</td>
<td>2.6*</td>
<td>0.9</td>
</tr>
<tr>
<td>Ovary</td>
<td>2.0*</td>
<td>1.5</td>
</tr>
<tr>
<td>Small Intestine</td>
<td>7.6*</td>
<td>1.6</td>
</tr>
<tr>
<td>Ureter</td>
<td>9.0*</td>
<td>2.9</td>
</tr>
</tbody>
</table>

* Compared to SEER

Segmental Colectomy and CRC in Lynch Syndrome

![Graph showing CRC Risk for Segmental Colectomy Cohort](Gut%202011%3A60%3A950-957)
Universal CRC Testing for LS

- 1066 patients, 2.2% had LS
- 19.5% had MSI, 11% were LS
- Phenotype:
 - 43% diagnosed > 50 years
 - 22% did not Amsterdam II or revised Bethesda guidelines

Germline Testing Results in 21 Proband’s Relatives

<table>
<thead>
<tr>
<th>Relationship</th>
<th>Tested</th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>First degree</td>
<td>54</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>Second degree</td>
<td>22</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>≥ Third degree</td>
<td>41</td>
<td>17</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td>117</td>
<td>52</td>
<td>65</td>
</tr>
</tbody>
</table>

Hampel H et al. NEJM 2005;352;18

LS Screening Method

Cleveland Clinic → Resected CRC

- Genetic testing If appropriate

2014 ACG Board of Governors/ASGE
Best Practices Course
Chemoprevention and Lynch Syndrome

![Graph showing the effect of aspirin on CRC incidence over time.](image)

Quick Risk Assessment Tool

- Do you have FDR with any of the following < age 50:
 - CRC
 - Uterus, ovary, stomach, small intestine, urinary tract, bile ducts, pancreas or brain cancer
- Have you had any of the following diagnosed < age 50?
 - CRC
 - Colorectal polyps
- Do you have 3 or more relatives (FDR, SDR) with CRC?

- Yes to questions: Refer for genetic assessment
 - Identifies 77% of high risk patients
 - 95% of Lynch patients (+ mutation)

Kastrinos et al. Am J Gastro 2009;104:
Gastroenterologists and MSI Testing

- Requires
 - Endoscopic bx of target lesion (adenoma or cancer) and normal tissue
- When to consider MSI testing during colonoscopy
 - Pts with CRC (plan operation)
 - Pts with proximal, >9 mm adenoma, <40 years old
 - Pts with adenoma/CRC and FHx suspicious for HNPCC

<table>
<thead>
<tr>
<th>Adenoma Size</th>
<th>MSI-H</th>
<th>Abnormal IHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 5 mm (N=22)</td>
<td>32%</td>
<td>38%</td>
</tr>
<tr>
<td>5-9 mm (N=7)</td>
<td>29%</td>
<td>57%</td>
</tr>
<tr>
<td>> 10 mm (N=6)</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Yurgelun MB, Cancer Prev Res 2012:5;574

Surveillance in Lynch Syndrome

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Interval</th>
<th>Age to begin</th>
<th>Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colonoscopy</td>
<td>1-2 yrs</td>
<td>20-25 yrs</td>
<td>Strong</td>
</tr>
<tr>
<td>Endometrial Bx, TVUS</td>
<td>1 yr</td>
<td>30-35 yrs</td>
<td>Insufficient</td>
</tr>
<tr>
<td>EGD</td>
<td>3-5 yrs</td>
<td>30-35 yrs</td>
<td>Insufficient</td>
</tr>
<tr>
<td>UA</td>
<td>1 yr</td>
<td>25-30</td>
<td>No comment</td>
</tr>
<tr>
<td>Hysterectomy/BSO</td>
<td>After childbearing</td>
<td>Fair</td>
<td></td>
</tr>
</tbody>
</table>

Or 2-5 yrs earlier if relative was < 25 years

NCCN 2013 www.nccn.org
Sanford R. Weiss, MD
Center for Hereditary Colorectal Neoplasia