Non-cardiac Chest Pain: Beyond GERD

Philip O. Katz, MD, FACG
Chairman, Division of Gastroenterology
Einstein Medical Center
Clinical Professor of Medicine
Jefferson Medical College
Philadelphia, PA
Esophageal Symptom Generation

Chemo-stimulation
Acid mediated

Reflux

Mechano-stimulation
Volume mediated

Heartburn
Regurgitation
Chest pain
Cough
Do Patients with NCCP Have Reflux?

Angina-type pain with normal coronaries
46% had abnormal 24 hour pH studies

100 patients referred by cardiologist for NCCP
48% had abnormal 24 hour pH studies
Does Treating Reflux Improve NCCP?

Achem 97
Fass 96
Xia 03
Pandak 02
Bautista 04
Squillace 93
Fass

Overall (95% CI)

Risk Ratio

Do Patients with NCCP Have Motility Abnormalities?

910 patients with NCCP

- Normal Motility (72%)
- Abnormal Motility (28%)
- Nutcracker (48%)
- NEMD (36%)
- DES (10%)
- Achalasia <1%
- Hypertensive LES (4%)

*DES 2.8%

Temporal Correlation Between Motor Abnormality and NCCP?

24-hr Ambulatory Esophageal Manometry

Peters (Gastro 94: 898, 1988)
16% of chest pain episodes with motor abnormality

Soffer (DDS 34: 1651, 1989)
9% of chest pain episodes with motor abnormality

Brumelhoft (Gastro 99: 1237, 1990)
13.8% of chest pain episodes with motor abnormality

Hawson (DDS 35: 302, 1990)
10% of chest pain episodes with motor abnormality
Chest Pain Associated with Sustained Muscle Contraction

- **pH**
- **Intraluminal Pressure (mmHg)**
- **Wall Thickness (mm)**

60 sec
Does Treating Motility Abnormality Improve NCCP?

Anticholinergic Agents
- Decrease amplitudes of abnormal contractions
- Decrease pain produced by balloon distention
- No trials for noncardiac chest pain

Nitrates
- Decrease amplitudes of abnormal contractions
- Only anecdotal reports of success

Calcium Channel Antagonists
- Decrease amplitudes of abnormal contractions
- Only anecdotal reports of success
- Nutcracker Esophagus - No benefit vs placebo
Does Treating Motility Abnormality Improve NCCP?

cGMP Phosphodiesterase Inhibitors
Decrease amplitudes of abnormal contractions and LES tone
No studies of symptoms

Botulinum Toxin (BoTox)
Open Label Trial
50% reduction in pain, 72% of patients
Mean duration 7.3 months

Pain Hypersensitivity from Injury/Inflammation

Primary Allodynia/Hyperalgesia
- Occurs in field of injury
- Sensitization of peripheral primary nociceptive afferents.

Secondary Allodynia/Hyperalgesia
- Occurs in healthy tissue around injury
- Increased excitability of spinal neurons activated by peripheral nociceptive afferents in the field of injury.
Do Patients with NCCP have Esophageal Hypersensitivity?

Barish (DDS 31: 1292, 1986)

- Balloon inflation
 - 28/50 (56%) patients had typical chest pain
 - 24 at \(\leq 8 \text{cc} \)
 - 6/30 (20%) controls had chest pain
 - All >8cc

- Impedance Planimetry
 - 20/24 (83%) patients, typical chest pain at
 - \(<50 \text{ cm H}_2\text{O}\)
 - 0 controls with chest pain at \(<50 \text{ cm H}_2\text{O}\)
Hypersensitivity to Balloon

(Barish et al: Gastroenterology 1986)
NCCP Hypersensitivity or Motor Dysfunction

Balloons Pressure (cm H$_2$O)

- **Normal**
- **NCCP**
- **NCCP post-atropine**

Sensory Perception
- Sensory Perception

Moderate Discomfort
- Moderate Discomfort

Pain
- Pain

Relation Between Additional Acid Exposure for 30 Minutes Preceding (GER-25) and Reflux Immediately for 5 Minutes Preceding (+SRA) Individual Chest Pain Episodes

<table>
<thead>
<tr>
<th>SI Level</th>
<th>Chest pain Episodes with +GER-25</th>
<th>Chest pain Episodes with –GER-25</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>High SI (≥50%)</td>
<td>23</td>
<td>2</td>
<td><0.002</td>
</tr>
<tr>
<td>+SRA</td>
<td>23</td>
<td>2</td>
<td><0.002</td>
</tr>
<tr>
<td>-SRA</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Low SI (<50%)</td>
<td>7</td>
<td>2</td>
<td><0.005</td>
</tr>
<tr>
<td>+SRA</td>
<td>7</td>
<td>2</td>
<td><0.005</td>
</tr>
<tr>
<td>-SRA</td>
<td>16</td>
<td>72</td>
<td></td>
</tr>
</tbody>
</table>

Treatment of Esophageal Visceral Hyperalgesia with Pain Modulators

Imipramine

- 75 mg/day, increased pain threshold to balloon distention.
- 50 mg/day, 52% reduction in frequency of CP (RPCT).

Trazodone

- 100-150 mg/day, improved CP frequency and intensity.
 - no Δ in motor fxn (RPCT)

Sertaline

- 50-200 mg/day, improved CP regardless of psych Δ (RPCT).

Theophylline
Imipramine (75 Mg) Increases Esophageal Pain Threshold

Studies in normal subjects

Vascular Hyperalgesia Adenosine Receptors?

Placebo

- Before:
- After:

Theophylline

- Before:
- After:

\[P = 0.027 \]

\[P = 0.028 \]

Visceral Hyperalgesia Adenosine Receptors?

Placebo

Before: $P = 0.9$

After: $P = 0.9$

Theophylline

Before: $P = 0.014$

After: $P = 0.03$

Noncardiac Chest Pain

Off the Wall
Do Psychiatric Abnormalities Cause NCCP%
Does Psychiatric Treatment Improve with NCCP?

Effect of Cognitive-Behavioral Therapy on Noncardiac Chest Pain

<table>
<thead>
<tr>
<th></th>
<th>Time</th>
<th>Therapy</th>
<th>No Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP Frequency (per wk)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>6.0±2.8</td>
<td>5.6±3.2</td>
<td></td>
</tr>
<tr>
<td>6 Months</td>
<td>1.1±1.8</td>
<td>5.1±4.3</td>
<td></td>
</tr>
<tr>
<td>12 Months</td>
<td>1.4±2.5*</td>
<td>5.5±6.5</td>
<td></td>
</tr>
<tr>
<td>CP Intensity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>3.7±1.9</td>
<td>3.5±2.0</td>
<td></td>
</tr>
<tr>
<td>6 Months</td>
<td>2.0±2.6</td>
<td>3.4±2.2</td>
<td></td>
</tr>
<tr>
<td>12 Months</td>
<td>1.7±2.2*</td>
<td>3.1±2.1</td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>10.3±4.5</td>
<td>7.9±3.9</td>
<td></td>
</tr>
<tr>
<td>6 Months</td>
<td>6.6±3.3</td>
<td>7.1±3.6</td>
<td></td>
</tr>
<tr>
<td>12 Months</td>
<td>6.9±3.1</td>
<td>7.2±4.0</td>
<td></td>
</tr>
</tbody>
</table>

No effect on physical, social, or emotional limitations or problems at work