CIRRHOSIS AND LIVER CANCER MORTALITY

- Cirrhosis is a common cause of mortality in young adults.
 - 5th most common cause of death for age 45-64 years.
 - 6th most common cause of death for age 25-44 years.
- Mortality from liver disease is rising:
 - Chronic HCV epidemic
 - Fatty liver disease
 - Increased rates of liver cancer
LIVER TRANSPLANT
ACCESS TO CARE

• ~16,000 persons waiting for a liver transplant
• ~6,000 liver transplants are performed annually
• ~100 liver transplant programs
 ▪ The majority of patients with cirrhosis live more than 2 hours or 100 miles from a liver transplant center
 ▪ Travel to the transplant center for routine visits is costly, time consuming, associated with loss of work, income and is emotionally and physically demanding on the patient.

LIVER TRANSPLANT
PRE-TRANSPLANT MANAGEMENT

• Identify the patient with liver disease at increased risk for liver related mortality
• Manage complications of cirrhosis
• Screen for liver cancer
• Recognizing special circumstances which require liver transplantation sooner
 ▪ Pulmonary complications of cirrhosis
 ▪ Polycystic liver disease
• Evaluate for other diseases which would preclude a patient from LT
 ▪ COPD
 ▪ Cardiac disease
ASSESSING MORTALITY
CHILD CLASS AND MELD SCORE

<table>
<thead>
<tr>
<th>MELD SCORE</th>
<th>CTP Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>INR</td>
<td>1 point</td>
</tr>
<tr>
<td>Total bilirubin</td>
<td>2 points</td>
</tr>
<tr>
<td>Serum creatinine</td>
<td>3 points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th> </th>
<th> </th>
<th>INR</th>
<th> </th>
<th> </th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
<td>1.7</td>
<td> </td>
<td>2.3</td>
</tr>
<tr>
<td> </td>
<td> </td>
<td>>2.3</td>
<td> </td>
<td>3</td>
</tr>
<tr>
<td>INR</td>
<td>< 1.7</td>
<td></td>
<td>< 2</td>
<td></td>
</tr>
<tr>
<td>< 1.7</td>
<td>1.7-2.3</td>
<td></td>
<td>2-3</td>
<td></td>
</tr>
<tr>
<td>> 2.3</td>
<td>> 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INR</td>
<td>< 2</td>
<td></td>
<td>< 3</td>
<td></td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>> 3.5</td>
<td></td>
<td>2.8-3.5</td>
<td></td>
</tr>
<tr>
<td>> 3</td>
<td>< 2.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin</td>
<td>> 3.5</td>
<td></td>
<td>2.8-3.5</td>
<td></td>
</tr>
<tr>
<td>< 2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ascites</td>
<td>None</td>
<td></td>
<td>Mild</td>
<td>Mod-Severe</td>
</tr>
<tr>
<td>None</td>
<td>Moderate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HE</td>
<td>None</td>
<td></td>
<td>Grade 1-2</td>
<td>Grade 3-4</td>
</tr>
<tr>
<td>Total Points</td>
<td>1 Yr Mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29</td>
<td>20%</td>
<td></td>
<td>53%</td>
<td>Child class A</td>
</tr>
<tr>
<td>30-39</td>
<td>53%</td>
<td></td>
<td>71%</td>
<td>Child class B</td>
</tr>
<tr>
<td>40+</td>
<td>71%</td>
<td></td>
<td>10-15</td>
<td>Child class C</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>20%</td>
<td>29%</td>
<td></td>
<td>55%</td>
<td></td>
</tr>
<tr>
<td>Total Points</td>
<td>1 Yr Mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- It is important to look at both the CTP and MELD scores.
- Complications of cirrhosis which do not factor into the MELD score calculation:
 - Ascites
 - HE
 - Esophageal or gastric varices
 - Serum albumin
 - Thrombocytopenia
 - All are risk factors for increased long term mortality from cirrhosis.
LIVER TRANSPLANT
WAITING TIME

• There is no such thing as a National waiting list
• 11 regions in USA
• Numerous OPOs within each region/state
• Function of the OPO
 ▪ Gain permission from family members for donation
 ▪ Transport organs to the matching transplant center
• Transplant MELD is based upon:
 ▪ Donation rate within the OPO
 ▪ Number of transplant centers within the OPO
 ▪ Number of patients waiting within the OPO

LIVER TRANSPLANT
UNOS REGIONS
LIVER TRANSPLANT
ALCOHOL

• Common cause for cirrhosis
• Less common indication for liver transplant
 ▪ Many patients do not stop consuming alcohol
 ▪ Poor social support systems
 ▪ Patients who abstain frequently get better
• Liver transplant programs have strict psycho-social criteria for patients with ETOH induced cirrhosis
 ▪ Mandatory 6 months of abstinence
 ▪ Mandatory counseling
 ▪ Random alcohol testing
 ▪ Delays the ability of the patient to be listed
 ▪ Reduces the likelihood for liver transplant

LIVER TRANSPLANT
HCC

• The incidence of HCC is rising
 ▪ Chronic HCV: Accounts for ~80% of HCC
 ▪ NAFLD: Can develop HCC in absence of cirrhosis
• Ultrasound all patients with cirrhosis Q 6 Months
• AFP is not necessary.
 ▪ 30% of HCC are AFP normal
 ▪ High AFPS are common without HCC
• Reserve CT and MRI for suspicious lesions on US
 ▪ Must be done as Triple phase study
 ▪ 90% accuracy
 ▪ Do not biopsy lesions that are characteristic of HCC
HCC STAGING

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Priority for LT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single lesion < 2 cm</td>
<td>No</td>
</tr>
</tbody>
</table>
| 2 | 1 lesion 2-5 cm in diameter
2-3 lesions 1-3 cm in diameter | Yes |
| 3 | 1 lesion > 5 cm in diameter
>3 lesions 1-3 cm in diameter | No |
| 4 | Evidence of Vascular invasion
Evidence of disease outside the liver | No |

HCC APPROACH TO THE PATIENT

<table>
<thead>
<tr>
<th>Stage</th>
<th>Treatment options</th>
<th>HCV or HBV</th>
</tr>
</thead>
</table>
| 1 | Resection
TACE
Microwave or RFA
Observe till stage 2 | Yes
Yes
Yes
Yes |
| 2 | Resection
TACE
Liver transplant | Yes
Yes
Suppress to LT |
| 3 | Resection
Downstage with radioembolization/TACE/etc
Sorafenib | Yes
Yes
No
No |
| 4 | Sorafenib | No |
LIVER TRANSPLANTATION PATIENTS ALIVE

Long term survival is dependent upon how well the adverse events which develop after liver transplantation are managed.

- Complications of immune suppressive medications
- Malignancy
- Recurrence of primary liver disease
- Biliary tract complications
- Infections
- General health issues
- Graft rejection
IMMUNE SUPPRESSION AGENTS

MAJOR ADVERSE EFFECTS

<table>
<thead>
<tr>
<th></th>
<th>Cyclosporine</th>
<th>Tacrolimus</th>
<th>Sirolimus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcineurin inhibitor</td>
<td>Calcineurin inhibitor</td>
<td>mTor receptor inhibitor</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td>Hypertension</td>
<td>Hyperlipidemia</td>
<td></td>
</tr>
<tr>
<td>Renal insufficiency</td>
<td>Renal insufficiency</td>
<td>Delayed wound healing</td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>Diabetes mellitus</td>
<td>Cytopenia</td>
<td></td>
</tr>
<tr>
<td>Hirsuitism</td>
<td>Alopecia</td>
<td>Myopathy, Edema</td>
<td></td>
</tr>
<tr>
<td>Gout</td>
<td>Neurotoxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gingival hyperplasia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LIVER TRANSPLANTATION

HYPERTENSION

- Calcineurin inhibitors
- Occurs in 70% of patients
- Etiology:
 - Afferent arteriolar vasoconstriction
 - Increase in renin, endothelin aldosterone
 - Sodium and water retention
- Treatment:
 - Calcium channel blockers
 - Alpha-blockers
 - Beta-blockers
 - ACE inhibitors
LIVER TRANSPLANTATION

RENAL INSUFFICIENCY

<table>
<thead>
<tr>
<th></th>
<th>Acute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>>50%</td>
<td>30% ESRD</td>
</tr>
<tr>
<td>Etiology</td>
<td>CNI inhibitor</td>
<td>CNI inhibitor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ischemia, fibrosis</td>
</tr>
<tr>
<td>Co-factors</td>
<td>Medications</td>
<td>Diabetes Mellitus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hypertension</td>
</tr>
<tr>
<td>Treatment</td>
<td>Decrease CNI</td>
<td>D/C CNI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Renal transplant</td>
</tr>
</tbody>
</table>

RENAL INSUFFICIENCY

ACUTE AND CHRONIC

<table>
<thead>
<tr>
<th>Years</th>
<th>Serum Creatinine (mg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td>3.0</td>
</tr>
<tr>
<td>12</td>
<td>3.5</td>
</tr>
<tr>
<td>14</td>
<td>4.0</td>
</tr>
</tbody>
</table>

- Prograf
- Switch to Sirolimus

ACG 2014 Annual Postgraduate Course・October 18-19, 2014
LIVER TRANSPLANTATION
MALIGNANCY

- Cutaneous
- Lymphoma
 - Monoclonal
 - Polyclonal (pseudolymphoma)
- Kaposi sarcoma
- Colon cancer
- Other cancer risks similar to that observed in general population

LIVER TRANSPLANTATION
CUTANEOUS MALIGNANCY

- Cell types
 - Squamous cell
 - Basal cell
- Nearly 6-fold more common than in general population
- Account for 50% of cancers in transplant recipients
- Sun exposure increases risk
- Risk increases with duration of immunosuppression
LIVER TRANSPLANTATION
LYMPHOPROLIFERATIVE DISORDERS

- 10-fold more common than in general population
- Monoclonal lymphoma:
 - Develops in 1-3% of transplant recipients
 - B-cell non-Hodgkins lymphoma
 - Develops within 1-3 years of transplant
 - Responds poorly to chemotherapy
- Polyclonal pseudolymphoma
 - Long term effect of immunosuppression
 - Reduce immune suppression
 - Treat co-existent EBV with acyclovir

LIVER TRANSPLANTATION
ULCERATIVE COLITIS

- Present in 70-90% of patients with sclerosing cholangitis
- Significantly increased risk of colon cancer
- Immunosuppression may decrease disease activity
- Reappearance of symptoms may be due to:
 - CMV colitis
 - C difficile
 - Other infectious agents
 - Acute worsening of colitis
COMPARED TO GENERAL POPULATION
COLON CANCER

LIVER TRANSPLANTATION
RECURRENCE OF DISEASE

- Hepatitis C virus
- Hepatitis B virus
- Hemochromatosis
- Non-alcoholic fatty liver disease
- Alcoholic fatty liver disease
- Primary biliary cirrhosis
- Sclerosing cholangitis
LIVER TRANSPLANTATION
HEPATITIS B

- Without treatment will recur in:
 - >90% of patients with chronic disease
 - < 10% of patients with acute HBV and fulminant hepatic failure
 - Virus in extrahepatic sites
 - Infects graft within days to weeks

- Prevention:
 - Hepatitis B immune globulin
 - Tenofovir or Entecovir
 - Emtricitabine/Tenofovir

HBIG IMMUNE PROPHYLAXIS

HBIG binds HBV
Prevents infection of hepatocytes

HBV Extra-hepatic Reservoir

HBIG
LIVER TRANSPLANTATION FOR HBV SURVIVAL AND HBIG THERAPY

Survival (%)

MONTHS

D Samuel et al.
N Eng J Med 1993;

LIVER TRANSPLANTATION FOR HBV PREVENTION OF RECURRENCE

ALT (IU/ml)

Months

HBIG
Lamivudine
Emtricitabine/Tenofovir

Pt: TW
HBsAg (+)
HBeAg (+)
HBVDNA (+)

HBsAg
HBV DNA

ACG 2014
ACG Postgraduate Course • October 18-19, 2014

Copyright 2014 American College of Gastroenterology
EMTRICITABINE/TENOFOVIR PREVENTS POST-LT HBV

- N=21
- Receiving HBIG and HBV DNA undetectable
- Emtricitabine/Tenofovir started
- HBIG stopped
- 20/21 remained HBV DNA undetectable
- 1 patient who could not afford Emtricitabine/Tenofovir developed recurrent HBV DNA. Became HBV DNA undetectable when Emtricitabine/Tenofovir added
- 2/21 (12%) had persistence of anti-S

RT Stravitz et al
Liver Int 2012; 32:1138-1145.

LIVER TRANSPLANTATION HEPATITIS C VIRUS

- Hepatitis C is the single most common indication for liver transplantation
- Accounts for 40-45% of persons
- Recurs in virtually all patients
- Accelerated fibrosis progression
- 30% of patients develop cirrhosis within 5 years
SOFOSBUVIR AND RBV PRE-LIVER TRANSPLANT

• SOF+RBV initiated prior to undergoing LT
• All patients had HCC with MELD exception
• Treatment continued up until the time of LT

<table>
<thead>
<tr>
<th>N</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>59 years (46-73)</td>
</tr>
<tr>
<td>Male</td>
<td>80%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>90%</td>
</tr>
<tr>
<td>HCV genotype: 1A, 1B, 2, 3</td>
<td>39%, 34%, 13%, 12%</td>
</tr>
<tr>
<td>IL28B non-CC</td>
<td>78%</td>
</tr>
<tr>
<td>Median MELD</td>
<td>8 (6-14)</td>
</tr>
<tr>
<td>Previous HCV treatment</td>
<td>75%</td>
</tr>
</tbody>
</table>

MP Curry et al. AASLD 2013

SOFOSBUVIR AND RIBAVIRIN PRE-LT TREATMENT

UD at LT

SVR Post-LT

< 30 days SVR when HCV RNA UD at LT

> 30 days

% of Patients

0 20 40 60 80 100

UD at LT SVR Post -LT < 30 days SVR when HCV RNA UD at LT > 30 days

MP Curry et al. AASLD 2013
SOFOSBUVIR AND RIBAVIRIN POST-LT SEVERE HCV

<table>
<thead>
<tr>
<th>Date</th>
<th>CMV</th>
<th>LBX</th>
<th>HVPG</th>
<th>SOF/RBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/11</td>
<td>LT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/11</td>
<td>+++</td>
<td>CMV/HCV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/12</td>
<td>+/-</td>
<td>IF 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/12</td>
<td>+/-</td>
<td>IF 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/12</td>
<td>+/-</td>
<td>IF 4</td>
<td>15</td>
<td>Start</td>
</tr>
<tr>
<td>3/13</td>
<td>+/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/13</td>
<td>Last para</td>
<td>Neg</td>
<td></td>
<td>HCV RNA (-)</td>
</tr>
<tr>
<td>6/13</td>
<td>No ascites</td>
<td>Neg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/13</td>
<td>Neg</td>
<td>IF 2</td>
<td>10</td>
<td>HCV RNA (-)</td>
</tr>
<tr>
<td>10/13</td>
<td>Neg</td>
<td></td>
<td></td>
<td>Stop</td>
</tr>
<tr>
<td>11/13</td>
<td>Neg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOFOSBUVIR AND RIBAVIRIN POST-LT SEVERE HCV

<table>
<thead>
<tr>
<th></th>
<th>SOF+RBV</th>
<th>SOF+PEGINF+RBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>32%</td>
<td>12</td>
</tr>
<tr>
<td>Mean time from LT (mos)</td>
<td>40 (3-178)</td>
<td>31 (5-124)</td>
</tr>
<tr>
<td>FCH</td>
<td>47%</td>
<td>33%</td>
</tr>
<tr>
<td>Week 4</td>
<td>69%</td>
<td>67%</td>
</tr>
<tr>
<td>Week 12</td>
<td>91%</td>
<td>75%</td>
</tr>
<tr>
<td>Week 24</td>
<td>83%</td>
<td>64%</td>
</tr>
<tr>
<td>EOT (last on tx)</td>
<td>100%</td>
<td>87%</td>
</tr>
<tr>
<td>SVR12</td>
<td>60%</td>
<td>50%</td>
</tr>
<tr>
<td>Death</td>
<td>30%</td>
<td>13%</td>
</tr>
</tbody>
</table>

X Forns et al
AASLD 2013

ACG 2014 Annual Postgraduate Course
Copyright 2014 American College of Gastroenterology

17
SOFOSBUVIR AND RBV POST-LT HCV

<table>
<thead>
<tr>
<th>N</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>59 years (49-75)</td>
</tr>
<tr>
<td>Male</td>
<td>78%</td>
</tr>
<tr>
<td>Caucasian</td>
<td>85%</td>
</tr>
<tr>
<td>HCV genotype: 1A, 1B, 2, 3</td>
<td>55%, 28%, 0%, 15%</td>
</tr>
<tr>
<td>IL28B non-CC</td>
<td>68%</td>
</tr>
<tr>
<td>HCV RNA (IU/ml)</td>
<td>6.55</td>
</tr>
<tr>
<td>Previous HCV treatment</td>
<td>88%</td>
</tr>
<tr>
<td>Mean time since LT</td>
<td>4.3 years (6-150 mos)</td>
</tr>
<tr>
<td>Tacrolimus, Cyclosporin</td>
<td>70%, 25%</td>
</tr>
</tbody>
</table>

SVR (%)

M Charlton et al.
AASLD 2013

ABT450/r-OMBITASVIR-DASABUVIR-RBV POST-LT HCV

- Single arm study
- LT > 12 months before enrollment
- 24 weeks of treatment
- Stage F0-F2
- Reduce dose of immune suppression
 - TAC: 0.5 mg Q week
 - CyA: 20% of pre-treatment dose

P Kwo et al.
EASL 2014.
ABT450/r-OMBITASVIR-DASABUVIR-RBV POST-LT HCV

N 34
Time since LT 48 months
Male 79%
Caucasian 85%
Mean age 60 years
IL28B non-CC 77%
Mean Log HCV RNA 6.6 IU/ml
Tacrolimus 85%
Mean creatinine 1.1 mg/dl

P Kwo et al. EASL 2014.

NEED FOR LIVER TRANSPLANT IMPACT OF ANTI-VIRAL TREATMENT

ACG 2014 Annual Postgraduate Course
Copyright 2014 American College of Gastroenterology
LIVER TRANSPLANT
INTERACTING WITH THE LT CENTER

The Past:
Patients referred to LT center.
Never come back to GI practice.

The Future:
GI MD participates in patient management
Can conduct many of the LT evaluation tests locally
Can treat liver cancer
Can manage immune suppression