Bacterial Overgrowth:
Getting the Bugs Out

Lawrence R. Schiller, MD, FACG
Digestive Health Associates of Texas
Baylor University Medical Center, Dallas

Bacterial Flora of the Gut

• Up to a million trillion (10^{15}) bacteria in gut
 – Only 10^{14} human cells in average body
 – ~500 distinct species identified in colon
 – Only ~1/3 of bacteria can be cultured
• Relatively stable populations
 – Selection of resident bacteria by gut immune system
• Traditionally viewed as commensals: no great benefit, no great harm
Bacterial Flora of the Gut

- Most bacteria are located in colon
- Bacterial flora in proximal small bowel is relatively sparse (<10^5 bacteria per mL)
- Density of bacteria in distal small bowel is higher (<10^8/mL), but still several orders of magnitude less than in colon
- Low density of bacteria in small intestine facilitates digestion

Effects of Bacterial Overgrowth

- Deconjugation of bile acids
 - Allows absorption of bile acid throughout gut
 - Reduces bile acid concentration below critical micellar concentration \(\rightarrow\) fat malabsorption
- Carbohydrate fermentation
 - Reduces carbohydrate absorption
 - Produces gas
- Interferes with vitamin B\(_{12}\) absorption
- Mucosal injury
Physiological Suppression of Bacterial Overgrowth

- Very low pH in stomach
- Secretory IgA
- Defensins/other Paneth cell products
- Gastric and small bowel motility
 - Migrating motor complex during fasting
- Ileoceleval valve

Settings in which Bacterial Overgrowth is Seen

- Hypochlorhydria due to gastritis or drugs
- IgA deficiency/immunodeficiency states
- Small bowel dysmotility, gastroparesis
 - Diabetes
 - Scleroderma
 - Pseudo-obstruction
- Structural problems
 - Blind loops/postoperative changes
 - Diverticula/strictures/gastrocolic fistulas
Clinical Predictors of SIBO

- 675 patients at Mayo Clinic who had duodenal aspirate for quantitative culture
 - 8% were positive
- Factors associated with (+) culture
 - Older age
 - Steatorrhea
 - Narcotic use
 - IBD, small bowel diverticula, pancreatitis

Old Presentations of Bacterial Overgrowth

- Malabsorption syndrome
 - Diarrhea/steatorrhea
 - Malnutrition
 - Vitamin deficiency states
 - Macrocytic anemia
 - Neuropathy
 - Tetany/osteomalacia
 - Night blindness/dermatitis
- Tropical sprue
New Presentations of Bacterial Overgrowth

- Chronic watery diarrhea
- Irritable bowel syndrome
 - A work in progress
 - Prevalence ranges from 5-80% of IBS patients in different studies (? test artifact)
 - “Chicken vs. egg” (treatment effects)
 - ? More distal location of excess bacterial flora
 - ? Relation to post-infectious state

Improvement in IBS Symptoms 1-10 weeks after completing 10 days of therapy with rifaximin or placebo

\[N=44 \text{ (P), } 43 \text{ (R)} \]
\[P=0.02 \]

New Presentations of Bacterial Overgrowth

• Other gut disorders\(^1\)
 – ? Inflammatory bowel disease
 – ? Unspecified sprue
 – ? Colorectal cancer
• Extraintestinal disease
 – ? Nonalcoholic fatty liver disease\(^2\)
 – Rosacea

\(^1\)DuPont AW, DuPont HL. *Nat Rev Gastroenterol Hepatol* 2011;8:523-531.

Diagnosis

• Direct tests
 – Quantitative culture of luminal aspirate
• Indirect tests
 – Products of bacterial metabolism
 • Short chain fatty acid concentration in aspirate
 • Urinary metabolite (4-hydroxyphenylacetic acid)
 – Absorption of exogenous substrate
 • D-xylose tolerance test (serum or urine)
 • Schilling test
Diagnosis

• Indirect tests
 – Bile acid deconjugation
 • Endogenous bile acid: unconjugated serum bile acid
 • Exogenous bile acid conjugated to marker
 – Ursodeoxycholic acid—p-aminobenzoic acid
 – Cholic acid—p-aminobenzoic acid
 – Breath tests

Breath Tests

• Based on bacterial metabolism of isotopically-labeled conjugated bile acid to isotopically-labeled CO₂ or fermentation of carbohydrate to hydrogen or methane gas
• Very dependent on technical factors
 – Dose of substrate administered
 – Collection of expired air for analysis
 – Time-course
 – Interpretation of concentration vs. time graphs1

1Ghoshal UC. *J Neurogastroenterol Motil* 2011;17:312-317.
Breath Tests

- Additional technical factors
 - 10-20% of individuals do NOT have hydrogen-producing bacteria
 - Simultaneous measurement of methane excretion may compensate for this
 - Analysis of expired air depends on precise methods, fastidious technique; not always reproducible from laboratory to laboratory
 - Increase in concentration that is positive signal is arbitrary (10 or 20 ppm)

Substrates for Breath Tests

- **Glucose**
 - Absorbed rapidly in proximal jejunum
 - Little substrate available in distal small bowel even with large dose (25 g)

- **Xylose**
 - Less well absorbed than glucose
 - Tiny doses (1 g) absorbed in proximal intestine
 - Larger doses (25 g) distributed further down gut

GLUCOSE AND XYLOSE ONLY MEASURE PROXIMAL OVERGROWTH
Substrates for Breath Tests

• Lactulose
 – Poorly absorbed in small bowel
 • Exposed to entire length of small bowel
 • Most enters colon and exposed to bacteria there
 – Interpretation of H₂ concentration—time curve
 • “Double-peak”
 • “Early peak” (<4 hours from ingestion)
 • “High peak” (>50 ppm at any time)
 – Confounding due to rapid transit
 • Independent transit measure: scintigraphy

• Isotopically-labeled conjugated bile acid
 – Normally absorbed in terminal ileum
 • Exposed to entire length of gut
 • Little should get to colon if ileal function is normal
 (Effect of rapid transit/ileal dysfunction)
 – Should pick up distal small bowel bacterial overgrowth, but no “gold standard” to compare
 – Isotopically-labeled CO₂ (not H₂) is detected
Performance Characteristics of Breath Tests

• Highly variable
• Breath hydrogen vs. quantitative culture
 – Glucose
 • Sensitivity: 27-93%
 • Specificity: 30-86%
 – Lactulose
 • Sensitivity: 17-89%
 • Specificity: 44-100%

Performance Characteristics of Breath Tests

• Isotopically-labeled CO$_2$ vs. quantitative culture
 – D-xylose (1 g dose)
 • Sensitivity: 42-100%
 • Specificity: 59-100%
 – Isotopically-labeled conjugated bile acid
 • Sensitivity: 70%
 • Specificity: 90%
Recommendations for Diagnostic Testing

- For **proximal** small bowel overgrowth
 - Aspirate for quantitative culture
 - Isotopically-labeled 1 g d-xylose breath test
 - Glucose breath hydrogen test
- For **distal** small bowel overgrowth
 - Ideal test not devised
 - Isotopically-labeled bile acid breath test
 - ? Aspiration via double-balloon enteroscopy

Treatment

- Effective antibiotic therapy is key
- Few controlled studies
- Choose agents that kill gram-negative aerobic enteric flora and/or anaerobes
 - Trimethoprim-sulfamethoxazole
 - Amoxicillin
 - Fluoroquinolones
 - Tetracyclines
 - Metronidazole
Rifaximin

- Poorly absorbable antibiotic, rifaximin, has been much studied lately
- Currently FDA-approved for treatment of travelers’ diarrhea (200 mg TID X 3 days), hepatic encephalopathy (550 mg BID)
- Doses used in studies: 400-550 mg TID X 7-14 days, ? more is better\(^1\)
- Did better than chlortetracycline for relief of symptoms and breath hydrogen excretion\(^2\)

\(^1\)Saadi M, McCallum RW. *Ther Adv Chronic Dis* 2013;4:71-75.

Treatment

- Initial course of treatment → assess response
- Relapse likely because fundamental process (e.g., stasis, immune problem) not addressed by antibiotics, but time to relapse uncertain
- Rotation of antibiotics to avoid resistance advised, but unproven
- Continuous therapy should be avoided